کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1267778 1496901 2016 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Bioelectrodes based on pseudocapacitive cellulose/polypyrrole composite improve performance of biofuel cell
ترجمه فارسی عنوان
بیوالکترودها مبتنی بر کامپوزیت سلولز/پلی پیرول pseudocapacitive باعث بهبود عملکرد سلول سوخت زیستی می شود
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه شیمی الکتروشیمی
چکیده انگلیسی


• Composite with carboxylic groups increased efficiency of FDH adsorption on the anode.
• Improved performance of biofuel cell based on pseudocapacitive nanocellulose/polypyrrole composite.
• High internal capacitance of the matrix enables efficient recharging of the fuel cell.

Enzymatic electrodes with high internal capacitance, based on cellulose/polypyrrole composite were optimized and utilized to design improved enzymatic fuel cell. Fructose dehydrogenase Gluconobacter sp. specifically adsorbed on the cellulose/polypyrrole matrix and electrophoretically immobilized and electrochemically entrapped Laccase Trametes versicolor, were used as the anode and cathode bioelectrocatalysts, respectively. The cellulose/polypyrrole composite film exhibited pseudocapacitive properties under mild pH conditions. Following modification with carboxylic groups the composite material enabled highly efficient adsorption of enzyme and provided good electrical contact between the enzymatic active sites and the electrode surface. The modified cellulose/polypyrrole composite based electrode was used for the anode leading to mediatorless fructose oxidation giving large catalytic current density, 12.8 mA cm− 2. Laccase and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) as the mediator entrapped in the cellulose/polypyrrole composite film generated dioxygen reduction current density of 2 mA cm− 2. Application of pseudocapacitive matrix and decreasing the distance between electrodes to 1 mm lead to improvement of the biofuel cell power output and its regeneration ability. The power of the cell was found to increase by introduction of a preconditioning step during which the cell was kept at open circuit voltage under fuel flow. After 24 h of preconditioning the matrix was recharged and the device output reached the power, 2.1 mW cm− 2 and OCV, 0.59 V.

Figure optionsDownload as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Bioelectrochemistry - Volume 112, December 2016, Pages 184–190
نویسندگان
, , , , , , ,