کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1268481 1497398 2016 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Ceramic foams coated with PtNi/CeO2ZrO2 for bioethanol steam reforming
موضوعات مرتبط
مهندسی و علوم پایه شیمی الکتروشیمی
پیش نمایش صفحه اول مقاله
Ceramic foams coated with PtNi/CeO2ZrO2 for bioethanol steam reforming
چکیده انگلیسی


• PtNi/CeO2ZrO2 powder and foam catalysts showed excellent performances in ESR.
• Low temperatures, space velocities and high fed water minimized carbon deposition.
• Heavier molecule impurities increased coke formation without effect on conversion.
• Boehmite-based catalysts showed higher resistance to deactivation than silica-based.

The catalytic activity of bimetallic PtNi/CeO2ZrO2 powders and foams, with a silicon carbide carrier and containing silica or boehmite as binder, was investigated for ethanol steam reforming in the low temperature range (400–500 °C). A parametric experimental study was preliminary performed to analyze the effect of different operative conditions (temperature, water/ethanol ratio and contact time) on coke selectivity: low temperatures and space velocities as well as high water contents in the feeding stream minimized carbon deposits formation and reactor plugging. Moreover, once analyzed the individual influence of C2H4O, C3H7OH, C4H9OH and C5H11OH, selected among the main bioethanol contaminants, on catalyst deactivation, a model mixture, containing 1% mol of all the impurities, was fed to the reformer at 15,000 h−1, T = 450 °C and water/ethanol ratio equal to 6. In order to test catalytic behavior in more stressful conditions, contact time was decreased and the stability of powder and foam catalysts was investigated at 50,000 h−1. Despite very similar H2 selectivities were recorded, the structured samples, containing boehmite as binder, showed the most interesting catalytic performance, as total ethanol conversion was assured for more than 1 day of time-on-stream. Foams geometry, in fact, enhanced coke gasification reactions, limiting, at the same time, plugging phenomena.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Hydrogen Energy - Volume 41, Issue 27, 20 July 2016, Pages 11526–11536
نویسندگان
, , ,