کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1277278 1497406 2016 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
X-ray diffraction of crystallization of copper (II) chloride for improved energy utilization in hydrogen production
موضوعات مرتبط
مهندسی و علوم پایه شیمی الکتروشیمی
پیش نمایش صفحه اول مقاله
X-ray diffraction of crystallization of copper (II) chloride for improved energy utilization in hydrogen production
چکیده انگلیسی


• Crystallization of CuCl2 from aqueous HCl solutions with different molarities is investigated experimentally.
• It has been determined that anhydrous CuCl2 does not crystalize under the specified conditions.
• Crystals extracted have been analyzed using XRD and TGA to validate the crystal structure.

Crystallization is an effective method to recover solids from solution, due to its relatively low energy utilization, low material requirements and lower cost compared to other alternatives. Hence, crystallization is of particular interest in the thermochemical copper-chlorine cycle for hydrogen production as an energy-saving means to extract solid CuCl2 from its aqueous solution. It has been determined from experiments that there is a range of concentrations that will demonstrate crystallization. If the initial concentration exceeds the upper bound of this range, the solution will be saturated and instantly become paste-like without forming crystals. Conversely, if the initial concentrations fall below the lower bound of a specified range, the solution will remain liquid upon cooling. As a result, it has been observed that crystallization does not occur for HCl concentrations below 3 M and above 9 M. Also, it has been found that anhydrous CuCl2 does not crystallize under any of the conditions tested. To analyze the composition of the recovered solids, X-ray diffraction (XRD) was employed. The samples were also analyzed using thermogravimetric analysis (TGA) in order to determine their thermochemical properties such as melting and decomposition temperatures. The stationary point on the TGA curve was found to be around 462 °C which is below the normal melting temperature of CuCl2. Also, the vaporization of the samples was found to be approximately 600 °C.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Hydrogen Energy - Volume 41, Issue 19, 25 May 2016, Pages 7848–7853
نویسندگان
, , , , ,