کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1922819 1535841 2016 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The methyl donor S-adenosylmethionine prevents liver hypoxia and dysregulation of mitochondrial bioenergetic function in a rat model of alcohol-induced fatty liver disease
موضوعات مرتبط
علوم زیستی و بیوفناوری بیوشیمی، ژنتیک و زیست شناسی مولکولی سالمندی
پیش نمایش صفحه اول مقاله
The methyl donor S-adenosylmethionine prevents liver hypoxia and dysregulation of mitochondrial bioenergetic function in a rat model of alcohol-induced fatty liver disease
چکیده انگلیسی


• Rats were fed control and alcohol diets±S-Adenosylmethionine (SAM) for 5 weeks.
• SAM prevented alcohol-induced liver hypoxia.
• SAM normalized mitochondrial respiration in alcohol-fed rats.
• SAM normalized sensitivity to undergo the mitochondrial permeability transition in alcohol-fed rats.
• SAM normalized nitric oxide-mediated respiratory inhibition in alcohol-fed rats.

BackgroundMitochondrial dysfunction and bioenergetic stress play an important role in the etiology of alcoholic liver disease. Previous studies from our laboratory show that the primary methyl donor S-Adenosylmethionine (SAM) minimizes alcohol-induced disruptions in several mitochondrial functions in the liver. Herein, we expand on these earlier observations to determine whether the beneficial actions of SAM against alcohol toxicity extend to changes in the responsiveness of mitochondrial respiration to inhibition by nitric oxide (NO), induction of the mitochondrial permeability transition (MPT) pore, and the hypoxic state of the liver.MethodsFor this, male Sprague-Dawley rats were pair-fed control and alcohol-containing liquid diets with and without SAM for 5 weeks and liver hypoxia, mitochondrial respiration, MPT pore induction, and NO-dependent control of respiration were examined.ResultsChronic alcohol feeding significantly enhanced liver hypoxia, whereas SAM supplementation attenuated hypoxia in livers of alcohol-fed rats. SAM supplementation prevented alcohol-mediated decreases in mitochondrial state 3 respiration and cytochrome c oxidase activity. Mitochondria isolated from livers of alcohol-fed rats were more sensitive to calcium-mediated MPT pore induction (i.e., mitochondrial swelling) than mitochondria from pair-fed controls, whereas SAM treatment normalized sensitivity for calcium-induced swelling in mitochondria from alcohol-fed rats. Liver mitochondria from alcohol-fed rats showed increased sensitivity to NO-dependent inhibition of respiration compared with pair-fed controls. In contrast, mitochondria isolated from the livers of SAM treated alcohol-fed rats showed no change in the sensitivity to NO-mediated inhibition of respiration.ConclusionCollectively, these findings indicate that the hepato-protective effects of SAM against alcohol toxicity are mediated, in part, through a mitochondrial mechanism involving preservation of key mitochondrial bioenergetic parameters and the attenuation of hypoxic stress.

Figure optionsDownload as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Redox Biology - Volume 9, October 2016, Pages 188–197
نویسندگان
, , , , , , , ,