کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
34185 45008 2016 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
In vitro 3-D multicellular models for cytotoxicity assay and drug screening
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی بیو مهندسی (مهندسی زیستی)
پیش نمایش صفحه اول مقاله
In vitro 3-D multicellular models for cytotoxicity assay and drug screening
چکیده انگلیسی


• A high-throughput drug screening system with autofluorescent mES and human colon cancer cells.
• Cells were cultured in 3-D PET scaffolds mimicking in vivo microenvironment.
• The 3-D cultures could be used as more reliable models for assessing dose-dependent drug responses.
• The in vitro HT-29 cell model could predict the effective dosage of 5-FU for treating colon cancer.
• This system should have applications in early-stage drug discovery and toxicological evaluation.

Three-dimensional (3-D) cell culture models have been developed to improve drug screening and predictive efficacy. In this study, a high-throughput drug screening system with autofluorescent cells cultured in 3-D polyethylene terephthalate (PET) scaffolds mimicking in vivo microenvironment was developed. Using a modified microbioreactor platform designed specifically for 3-D cell cultures, three commonly used drugs, 5-fluorouracil (5-FU), gemcitabine, and sodium butyrate, were tested for their cytotoxicity on 3-D mouse embryonic stem (mES) cells and human colon cancer HT-29 cells, respectively. In general, 3-D cultures with multicellular structures exhibited similar expression in Ki-67 (a proliferation marker) and p27kip1 (a quiescence marker) as compared to fresh tissues, and gave better predictive values of effective drug dosage in vivo. The 3-D multicellular mES and HT-29 cultures could be used as more reliable models for assessing dose-dependent drug responses, potentially reducing or partially replacing animal experiments, and thus should have applications in the early-stage drug discovery as well as toxicological evaluation of chemical compounds.

Microbioreactors on modified 384-well plate with 3-D PET scaffold for growing cells expressing green fluorescent protein (GFP) in response to drug as a multicellular model for high throughput cytotoxicity and drug efficacy screening.Figure optionsDownload as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Process Biochemistry - Volume 51, Issue 6, June 2016, Pages 772–780
نویسندگان
, , , ,