کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4459459 1621285 2011 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Estimating life-form cover fractions in California sage scrub communities using multispectral remote sensing
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات کامپیوتر در علوم زمین
پیش نمایش صفحه اول مقاله
Estimating life-form cover fractions in California sage scrub communities using multispectral remote sensing
چکیده انگلیسی

The California sage scrub (CSS) community type in California's Mediterranean-type ecosystems is known for its high biodiversity and is home to a large number of rare, threatened, and endangered species. Because of extensive urban development in the past fifty years, this ecologically significant community type is highly degraded and fragmented. To conserve endangered CSS communities, monitoring internal conditions of communities is as crucial as monitoring distributions of the community type in the region. Vegetation type mapping and field sampling of individual plants provide ecologically meaningful information about CSS communities such as spatial distribution and species compositions, respectively. However, both approaches only provide spatially comprehensive information but no information about internal conditions or vice versa. Therefore, there is a need for monitoring variables which fill the information gap between vegetation type maps and field-based data. A number of field-based studies indicate that life-form fractional cover is an effective indicator of CSS community health and habitat quality for CSS-obligated species. This study investigates the effectiveness of remote sensing approaches for estimating fractional cover of true shrub, subshrub, herb, and bare ground in CSS communities of southern California. Combinations of four types of multispectral imagery ranging from 0.15 m resolution scanned color infrared aerial photography to 10 m resolution SPOT 5 multispectral imagery and three image processing models – per-pixel, object-based, and spectral mixture models – were tested.An object-based image analysis (OBIA) routine consistently yielded higher accuracy than other image processing methods for estimating all cover types. Life-form cover was reliably predicted, with error magnitudes as low as 2%. Subshrub and herb cover types required finer spatial resolution imagery for more accurate predictions than true shrub and bare ground types. Positioning of sampling grids had a substantial impact on the reliability of accuracy assessment, particularly for cover estimates predicted using multiple endmember spectral mixture analysis (MESMA) applied to SPOT imagery. Of the approaches tested in this study, OBIA using pansharpened QuickBird imagery is one of the most promising approaches because of its high accuracy and processing efficiency and should be tested for more heterogeneous CSS landscapes. MESMA applied to SPOT imagery should also be examined for effectiveness in estimating factional cover over more extensive habitat areas because of its low data cost and potential for conducting retrospective studies of vegetation community conditions.


► We tested ten remote sensing approaches to estimate plant life-form cover.
► Subshrub and herb require fine resolution imagery for more accurate predictions.
► Object-based image analysis (OBIA) consistently yielded high accuracy.
► Endmember spectral purity is the key to achieving high accuracy using MESMA.
► Grid-pixel alignment also impact accuracy of cover estimate using MESMA.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Remote Sensing of Environment - Volume 115, Issue 12, 15 December 2011, Pages 3056–3068
نویسندگان
, , ,