کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4463292 1621639 2016 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Spectral analysis of sea level during the altimetry era, and evidence for GIA and glacial melting fingerprints
ترجمه فارسی عنوان
تحلیل طیفی از سطح دریا در طول دوران ارتفاع سنج و شواهد برای GIA و ردپای ذوب شدن یخ ها
کلمات کلیدی
تغییر سطح دریا. عصر ارتفاع سنجی؛ توابع متعامد
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات فرآیندهای سطح زمین
چکیده انگلیسی


• Sea level rise maps from altimetric observations are split in orthonormal components.
• Correlations between sea level and the steric field are studied at multiple scales.
• The GIA and glacial melting fingerprints are masked by the pattern of steric sea-level.

We study the spatial patterns of the mass and steric components of sea-level change during the “altimetry era” (1992–today), and we characterize them at different scales by the orthonormal functions method. The spectrum of the altimetry-derived rate of sea-level rise is red and decays with increasing wavenumber nearly following a power law with exponent ≈ 2. By analyzing the degree correlation and the admittance function, we find that the altimetric rate of sea-level change is coherent with the total steric field in the whole range of wavelengths considered (down to ≈ 1000 km), but particularly for wavelengths exceeding ≈ 2000 km. Thermosteric and halosteric components are moderately anti-correlated within the range of wavelengths 1000–4000 km. Their power spectrum varies significantly with the wavelength and, for ≈ 2000 km, it is equally partitioned between the two components. The power of regional sea-level variations driven by Glacial Isostatic Adjustment and the melting of continental ice sheets is small compared to that held by the steric component, which explains most of the regional variability shown by the altimetry record. This causes the elusiveness of the “static” sea-level fingerprints, which at present are hidden in the pattern of the residual sea-level (i.e., the altimetry-derived sea-level minus the steric component). However, we find that at harmonic degree 2, mainly associated with rotational variations, the power of glacial melting is significant and it will progressively increase during next century in response to global warming. We also estimate that at the end of the Mid-Holocene the strength of the glacial isostatic readjustment fingerprints was ≈ 10 times larger than today, well above the long-wavelength component of residual sea-level.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Global and Planetary Change - Volume 143, August 2016, Pages 34–49
نویسندگان
, ,