کد مقاله کد نشریه سال انتشار مقاله انگلیسی ترجمه فارسی نسخه تمام متن
4464579 1621807 2016 13 صفحه PDF سفارش دهید دانلود کنید
عنوان انگلیسی مقاله ISI
Linking in situ LAI and fine resolution remote sensing data to map reference LAI over cropland and grassland using geostatistical regression method
ترجمه فارسی عنوان
ایجاد ارتباط بین شاخص سطح برگ در محل و اطلاعات سنجش از دور وضوح خوب برای ترسیم شاخص سطح برگ مرجع بر روی زمین های زراعی و علفزار با استفاده از روش رگرسیون زمین آماری
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI
فقط 3 هزار تومان
سفارش ترجمه تخصصی
با تضمین قیمت و کیفیت
کلمات کلیدی
شاخص سطح برگ؛ رگرسیون زمین آماری؛ کاهش محور اصلی؛ شاخص پوشش گیاهی
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات کامپیوتر در علوم زمین
چکیده انگلیسی


• A geostatistical regression (GR) method for leaf area index up-scaling is proposed.
• Performance of GR method is better than reduced major axis method.
• Performance of GR method varies among vegetation indices and land cover types.

Leaf Area Index (LAI) is an important parameter of vegetation structure. A number of moderate resolution LAI products have been produced in urgent need of large scale vegetation monitoring. High resolution LAI reference maps are necessary to validate these LAI products. This study used a geostatistical regression (GR) method to estimate LAI reference maps by linking in situ LAI and Landsat TM/ETM+ and SPOT-HRV data over two cropland and two grassland sites. To explore the discrepancies of employing different vegetation indices (VIs) on estimating LAI reference maps, this study established the GR models for different VIs, including difference vegetation index (DVI), normalized difference vegetation index (NDVI), and ratio vegetation index (RVI). To further assess the performance of the GR model, the results from the GR and Reduced Major Axis (RMA) models were compared. The results show that the performance of the GR model varies between the cropland and grassland sites. At the cropland sites, the GR model based on DVI provides the best estimation, while at the grassland sites, the GR model based on DVI performs poorly. Compared to the RMA model, the GR model improves the accuracy of reference LAI maps in terms of root mean square errors (RMSE) and bias.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Applied Earth Observation and Geoinformation - Volume 50, August 2016, Pages 26–38
نویسندگان
, , , , ,
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI
فقط 3 هزار تومان
سفارش ترجمه تخصصی
با تضمین قیمت و کیفیت