کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
44764 46347 2016 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Photosensitive polymer and semiconductors bridged by Au plasmon for photoelectrochemical water splitting
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی کاتالیزور
پیش نمایش صفحه اول مقاله
Photosensitive polymer and semiconductors bridged by Au plasmon for photoelectrochemical water splitting
چکیده انگلیسی


• A synthesized photoelectrode TiO2/Au/PTh was applied in photoelectrochemical water splitting and provided H2 production rate for the first time.
• Au nanoparticles play a role as both cocatalyst and electronic transmission carrier, because of its Plasmon effect and electronic transmission capability.
• Many results like photoelectric response, conversion efficiency, photovoltage decay and so on have effectively prove the advantage of the ternary structure.

Heterogeneous semiconductor has received increasing attention as promising photoelectrode matrix in photoelectrochemical (PEC) water splitting. However, the composition and optimization of heterostructure still limited the photoelectric transformation and PEC water splitting efficiencies. Here, an effective strategy was introduced to enhance PEC performance by sandwiching Au plasmon inside inorganic-organic hybrid heterostructure. We successfully fabricated TiO2 and polythiophene (PTh) heterostructure bridged by Au nanoparticles, and applied it in PEC water splitting for the first time. Compared with traditional TiO2 and TiO2/PTh, the as-prepared heterostructure photoelectrode exhibited the optimal photoelectric conversion (0.11%, at 0.22 V vs Ag/AgCl) and PEC hydrogen production rate (2.929 mmol h−1 m−2, at 50 mW/cm2 and 0.4 V vs Ag/AgCl). The enhanced water splitting can be mainly contributed to the transparent PTh nanowires as the photosensitizer and Au nanoparticles as both electron-transport bridge and plasmonic sites.

The synthesized TiO2/Au/PTh photoelectrode, increasing the absorption of visible light and promoting the electron transfer between organic polymer and inorganic material, could be enhanced the effect of light conversion efficiency and photoelectrocatalysis for hydrogen production.Figure optionsDownload as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Catalysis B: Environmental - Volume 195, 15 October 2016, Pages 9–15
نویسندگان
, , , , , ,