کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4554065 1628048 2016 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
K+ Uptake, H+-ATPase pumping activity and Ca2+ efflux mechanism are involved in drought tolerance of barley
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم کشاورزی و بیولوژیک بوم شناسی، تکامل، رفتار و سامانه شناسی
پیش نمایش صفحه اول مقاله
K+ Uptake, H+-ATPase pumping activity and Ca2+ efflux mechanism are involved in drought tolerance of barley
چکیده انگلیسی


• Transient and steady-state ion fluxes were measured by MIFE technique.
• Tibetan wild barley XZ5 showed more tolerant to drought than cv Tadmor and ZJU9.
• XZ5 showed the least Ca2+ efflux and H+ alteration under drought over Tadmor/ZJU9.
• XZ5 recorded the highest K+ uptake in root epidermis and leaf mesophyll in drought.
• K+ uptake, leaf H+ influx/alkalization of apoplastic pH be a chemical signal for barley drought response.

ABSTRACTChemical signals play a significant role in improving plant water use efficiency under drought stress. Hydroponic and pot experiments were conducted using three barley genotypes to study genotypic differences in K+, Ca2+ and H+ fluxes and physiological and biochemical traits of drought tolerant Tibetan wild barley XZ5 and cv Tadmor and drought sensitive cv ZJU9 in response to drought. Transient and steady-state ion fluxes were measured by noninvasive ion-selective microelectrode MIFE technique. We showed that exogenous PEG (polyethylene glycol 6000) and mannitol and soil drought stress all resulted in an immediate K+ uptake from root epidermis and leaf mesophyll, with much more uptake in XZ5. Long-term drought stress are more detrimental to root K+ homeostasis, and the degree of K+ uptake differed due to severity of drought stress and was less presented in XZ5. Barley subjected to drought stress caused a large H+ efflux in root epidermis and H+ influx in leaf mesophyll, with significantly less alteration in XZ5 and Tadmor than in ZJU9. Meanwhile a dramatic Ca2+ efflux was observed in root epidermis and leaf mesophyll under drought stress. PEG and mannitol treatments induced marked increases in H+-K+-ATPase in XZ5 and Tadmor. Our results demonstrate that K+ uptake, Ca2+ efflux and leaf H+ influx/alkalization of apoplastic pH could be a chemical signal in barley in response to drought stress, and that stimulated H+-K+-ATPase and K+ uptake, but less Ca2+ efflux and H+ alteration under drought, when concerning ionic mechanisms underlying drought tolerance, play an important role in drought tolerance in XZ5.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Environmental and Experimental Botany - Volume 129, September 2016, Pages 57–66
نویسندگان
, , , , , ,