کد مقاله کد نشریه سال انتشار مقاله انگلیسی ترجمه فارسی نسخه تمام متن
4572819 1332395 2017 10 صفحه PDF ندارد دانلود رایگان
عنوان انگلیسی مقاله
Soil type and texture impacts on soil organic carbon storage in a sub-tropical agro-ecosystem
ترجمه فارسی عنوان
اثرات نوع خاک و بافت بر ذخیره سازی کربن آلی خاک در یک اکوسیستم کشت و نیمه گرمسیری
کلمات کلیدی
ضریب تعیین؛ CS، توالی محصول؛ EF، بازده مدل؛ریشه میانگین مربعات خطا؛ SOC، خاک کربن آلی؛ SOM،
CD, coefficient of determination; CS, crop sequence; EF, modeling efficiency; InAn, Inceptisol Anthrept; InDy, Inceptisol Dystrudept; M, average residue; RE, relative error; RH, Rhodic Hapludox; RMSE, root mean square error; SOC, soil organic carbon; SOM,
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات فرآیندهای سطح زمین
چکیده انگلیسی


• Century model perform well, but underestimates carbon stocks in sub-tropical soils.
• Soil texture affects more the simulation bias of Century than soil types.
• The simulation bias was greater for sandy compared to clay soils.
• The effect of silt + clay content on soil carbon storage was non-linear.

Soil organic carbon (C) plays a fundamental role in tropical and subtropical soil fertility, agronomic productivity, and soil health. As a tool for understand ecosystems dynamics, mathematical models such as Century have been used to assess soil's capacity to store C in different environments. However, as Century was initially developed for temperate ecosystems, several authors have hypothesized that C storage may be underestimated by Century in Oxisols. We tested the hypothesis that Century model can be parameterized for tropical soils and used to reliably estimate soil organic carbon (SOC) storage. The aim of this study was to investigate SOC storage under two soil types and three textural classes and quantify the sources and magnitude of uncertainty using the Century model. The simulation for SOC storage was efficient and the mean residue was 10 Mg C ha− 1 (13%) for n = 91. However, a different simulation bias was observed for soil with < 600 g kg− 1 of clay was 16.3 Mg C ha− 1 (18%) for n = 30, and at > 600 g kg− 1 of clay, was 4 Mg C ha− 1 (5%) for n = 50, respectively. The results suggest a non-linear effect of clay and silt contents on C storage in Oxisols. All types of soil contain nearly 70% of Fe and Al oxides in the clay fraction and a regression analysis showed an increase in model bias with increase in oxides content. Consequently, inclusion of mineralogical control of SOC stabilization by Fe and Al (hydro) oxides may improve results of Century model simulations in soils with high oxides contents.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Geoderma - Volume 286, 15 January 2017, Pages 88–97
نویسندگان
, , , , , ,