کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4577283 1630005 2012 19 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Value of adaptive water resources management in northern California under climatic variability and change: Dynamic hydroclimatology
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات فرآیندهای سطح زمین
پیش نمایش صفحه اول مقاله
Value of adaptive water resources management in northern California under climatic variability and change: Dynamic hydroclimatology
چکیده انگلیسی

SummaryThe overall goal of the present study is to show through a simulation experiment the value of adaptive management under climatic variability and change. The Northern California water resources management system is used as an example of a multi-agency, multi-site, multi-objective water resources management system that supports a trillion dollar economy to demonstrate the utility of the methods and to exemplify the assessment studies. Simulations are performed using an adaptation of the Integrated Forecast and Reservoir Management (INFORM) system of Northern California with 6-hourly 1.4° input from the CCSM3.0 climate model for historical/control (1970–2019) and future periods (2050–2099). The present paper examines the assessment of the hydroclimatological sensitivities and a companion paper (Georgakakos et al., this issue) examines the assessment of reservoir management sensitivities. The future period was based on the moderate CCSM3.0 A1B scenario. The INFORM system includes an intermediate complexity regional model for dynamic downscaling of the CCSM3.0 scenario output to produce surface precipitation and temperature fields with a 10 × 10 km2 resolution, and snow–soil-channel modeling of all the watersheds upstream of the major reservoirs in Northern California. The flow results indicate a shift in the monthly average flow volume toward earlier times in the year and higher flow variability for the future period. Higher average temperatures in the future period and, consequently, earlier snow pack melt are mainly responsible for these flow changes. Both daytime and nighttime average monthly temperatures are higher in the simulation of the future period for the entire domain with the northern catchments experiencing higher temperature increases. Simulated monthly average precipitation for the future period is higher in the southern high Sierras and lower in the northern drainage basins than the historical period precipitation. The uncertainty in the assessments for Northern California mentioned may be estimated with additional simulations similar to those shown in this work using high spatial and temporal resolution output from different climate models.


► Potential changes in land surface hydrology over the next 100 years for the mountainous Northern California.
► Climate change simulations using three-dimensional control and A1B projected fields from the CCSM30 ateclim model.
► Dynamic downscaling produces10km consistent precipitation and temperature fields.
► Dynamic downscaling detects within-region differences in projected changes.
► Projected reservoir inflows exhibit early shifts and higher variability (water resources implications in companion paper).

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Hydrology - Volumes 412–413, 4 January 2012, Pages 47–65
نویسندگان
, , , , , , , ,