کد مقاله کد نشریه سال انتشار مقاله انگلیسی ترجمه فارسی نسخه تمام متن
4663018 1345220 2015 12 صفحه PDF ندارد دانلود رایگان
عنوان انگلیسی مقاله
Implementation and testing of a soft computing based model predictive control on an industrial controller
ترجمه فارسی عنوان
پیاده سازی و آزمون کنترل پیش بینانه مدل در یک کنترلر صنعتی مبتنی بر محاسبات نرم افزاری
کلمات کلیدی
الگوریتم ژنتیک چندهدفه ؛ شبکه عصبی؛ NMPC؛ تست تپه؛ کنترل صنعتی
Multiobjective genetic algorithm; Neural network; NMPC; HiL testing; Industrial controller
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات منطق ریاضی
چکیده انگلیسی

This work presents a real time testing approach of an Intelligent Multiobjective Nonlinear-Model Predictive Control Strategy (iMO-NMPC). The goal is the testing and analysis of the feasibility and reliability of some Soft Computing (SC) techniques running on a real time industrial controller. In this predictive control strategy, a Multiobjective Genetic Algorithm is used together with a Recurrent Artificial Neural Network in order to obtain the control action at each sampling time. The entire development process, from the numeric simulation of the control scheme to its implementation and testing on a PC-based industrial controller, is also presented in this paper. The computational time requirements are discussed as well. The obtained results show that the SC techniques can be considered also to tackle highly nonlinear and coupled complex control problems in real time, thus optimising and enhancing the response of the control loop. Therefore this work is a contribution to spread the SC techniques in on-line control applications, where currently they are relegated mainly to be used off-line, as is the case of optimal tuning of control strategies.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Applied Logic - Volume 13, Issue 2, Part A, June 2015, Pages 114–125
نویسندگان
, , , , ,