کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4758135 1420404 2018 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Porous carbon monoliths with pore sizes adjustable between 10 nm and 2 μm prepared by phase separation - New insights in the relation between synthesis composition and resulting structure
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی کاتالیزور
پیش نمایش صفحه اول مقاله
Porous carbon monoliths with pore sizes adjustable between 10 nm and 2 μm prepared by phase separation - New insights in the relation between synthesis composition and resulting structure
چکیده انگلیسی


- Investigation of a simple and flexible synthesis route for porous carbon monoliths.
- A wide range of pore diameters is achievable by changing the solvent composition.
- A study of the dependence between pore size and solvent composition is carried out.
- Activated monoliths show a good CO2 adsorption capacity.

Porous carbon monoliths with tunable porosity are promising materials for a variety of applications like energy storage and adsorption. But the synthesis of carbons with monolithic shape and controlled porosity is often time-consuming and expensive. Here, micro-/macroporous and micro-/mesoporous carbon monoliths were synthesized via a simple process of polymerization induced phase separation of resorcinol and formaldehyde followed by drying at ambient pressure and carbonization. The carbon monoliths are mechanically stable and exhibit specific surface areas between 390 and 1100 m2·g−1. The size of the macro- and mesopores can be tailored over a wide range from approximately 10 nm to 2 μm by simply altering the solvent composition during the synthesis of the organic monoliths. The influence of solvent composition and resorcinol concentration on the pore size in the carbon monoliths was investigated with a focus on the smaller pore sizes and an exponential relation was observed. Finally, selected monoliths were activated in a stream of CO2 to produce hierarchically porous monoliths with specific surface areas between 1000 and 2400 m2·g−1. The activated monoliths were characterized in terms of their CO2 adsorption and showed adsorption capacities of up to 3.10 mmol·g−1 at 298 K.

356

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Microporous and Mesoporous Materials - Volume 255, 1 January 2018, Pages 271-280
نویسندگان
, , , ,