کد مقاله کد نشریه سال انتشار مقاله انگلیسی ترجمه فارسی نسخه تمام متن
4965633 1448451 2018 11 صفحه PDF سفارش دهید دانلود کنید
عنوان انگلیسی مقاله ISI
Adaptive sparse polynomial chaos expansions for global sensitivity analysis based on support vector regression
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI
فقط 3 هزار تومان
سفارش ترجمه تخصصی
با تضمین قیمت و کیفیت
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله
Adaptive sparse polynomial chaos expansions for global sensitivity analysis based on support vector regression
چکیده انگلیسی


- A new algorithm for building sparse polynomial chaos expansion (PCE) is proposed.
- Global sensitivity analysis is employed based on the sparse PCE.
- The proposed method is efficient for engineering applications of complex models.

In the context of uncertainty analysis, Polynomial chaos expansion (PCE) has been proven to be a powerful tool for developing meta-models in a wide range of applications, especially for sensitivity analysis. But the computational cost of classic PCE grows exponentially with the size of the input variables. An efficient approach to address this problem is to build a sparse PCE. In this paper, a full PCE meta-model is first developed based on support vector regression (SVR) technique using an orthogonal polynomials kernel function. Then an adaptive algorithm is proposed to select the significant basis functions from the kernel function. The selection criterion is based on the variance contribution of each term to the model output. In the adaptive algorithm, an elimination procedure is used to delete the non-significant bases, and a selection procedure is used to select the important bases. Due to the structural risk minimization principle employing by SVR model, the proposed method provides better generalization ability compared to the common least square regression algorithm. The proposed method is examined by several examples and the global sensitivity analysis is performed. The results show that the proposed method establishes accurate meta-model for global sensitivity analysis of complex models.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computers & Structures - Volume 194, 1 January 2018, Pages 86-96
نویسندگان
, ,
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI
فقط 3 هزار تومان
سفارش ترجمه تخصصی
با تضمین قیمت و کیفیت