کد مقاله کد نشریه سال انتشار مقاله انگلیسی ترجمه فارسی نسخه تمام متن
4977366 1367710 2018 10 صفحه PDF سفارش دهید دانلود کنید
عنوان انگلیسی مقاله
A novel deep multi-channel residual networks-based metric learning method for moving human localization in video surveillance
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر پردازش سیگنال
پیش نمایش صفحه اول مقاله
A novel deep multi-channel residual networks-based metric learning method for moving human localization in video surveillance
چکیده انگلیسی


- Multi-channel deep residual network for metric learning.
- Two algorithms for optimization.
- Moving human localization in surveillance is tackled.

Moving human localization is the first pre-requisite step of human activity analysis in video surveillance. Identifying human targets accurately and efficiently is always of high demands in computer vision studies. Also, learning is often indispensable in contemporary moving human localization, and unknown parameters of proposed methods need to be properly adjusted to guarantee the final localization performance. Such a task can be facilitated with the help of popular deep learning techniques, especially when enormous surveillance video clips become commonly seen nowadays. In this study, the metric learning problem in moving human localization is emphasized, and a new deep multi-channel residual networks-based metric learning method is introduced for the first time. Specifically, the deep metric learning problem in this new method is solved within a ranking procedure via both the conventional stochastic gradient descent algorithm and a more efficient proximal gradient descent algorithm. Comprehensive experiments are conducted and this new method is compared with several other popular deep learning-based approaches. Qualitative and quantitative analysis are conducted from the statistical perspective, to evaluate all localization outcomes obtained by all compared methods based on two specific measurements. The localization performance of this new method is suggested to be promising after the comprehensive analysis.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Signal Processing - Volume 142, January 2018, Pages 104-113
نویسندگان
, , ,