کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5030743 1470931 2018 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Rechargeable, flexible and mediator-free biosupercapacitor based on transparent ITO nanoparticle modified electrodes acting in µM glucose containing buffers
موضوعات مرتبط
مهندسی و علوم پایه شیمی شیمی آنالیزی یا شیمی تجزیه
پیش نمایش صفحه اول مقاله
Rechargeable, flexible and mediator-free biosupercapacitor based on transparent ITO nanoparticle modified electrodes acting in µM glucose containing buffers
چکیده انگلیسی
We present a transparent and flexible self-charging biosupercapacitor based on an optimised mediator- and membrane-free enzymatic glucose/oxygen biofuel cell. Indium tin oxide (ITO) nanoparticles were spray-coated on transparent conducting ITO supports resulting in a flocculent, porous and nanostructured electrode surface. By this, high capacitive currents caused by an increased electrochemical double layer as well as enhanced catalytic currents due to a higher number of immobilised enzyme molecules were obtained. After a chemical pre-treatment with a silane derivative, bilirubin oxidase from Myrothecium verrucaria was immobilized onto the ITO nanostructured electrode surface under formation of a biocathode, while bioanodes were obtained by either immobilisation of cellobiose dehydrogenase from Corynascus thermophilus or soluble PQQ-dependent glucose dehydrogenase from Acinetobacter calcoaceticus. The latter showed a lower apparent KM value for glucose conversion and higher catalytic currents at µM glucose concentrations. Applying the optimised device as a biosupercapacitor in a discontinuous charge/discharge mode led to a generated power output of 0.030 mW/cm2 at 50 µM glucose, simulating the glucose concentration in human tears. This represents an enhancement by a factor of 350 compared to the power density obtained from the continuously operating biofuel cell with a maximum power output of 0.086 µW/cm2 under the same conditions. After 17 h of charging/discharging cycles a remarkable current enhancement was still measured. The entire device was transferred to flexible materials and applied for powering a flexible display showing its potential applicability as an intermittent power source in smart contact lenses.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Biosensors and Bioelectronics - Volume 101, 15 March 2018, Pages 84-89
نویسندگان
, , , , , ,