کد مقاله کد نشریه سال انتشار مقاله انگلیسی ترجمه فارسی نسخه تمام متن
504802 864435 2016 6 صفحه PDF ندارد دانلود رایگان
عنوان انگلیسی مقاله
A computational approach to mortality prediction of alcohol use disorder inpatients
ترجمه فارسی عنوان
یک روش محاسباتی پیش بینی مرگ و میر بیماران بستری شده با اختلال مصرف الکل
کلمات کلیدی
بخش مراقبت ویژه؛ بخش مراقبت ویژه پزشکی؛ پرونده الکترونیک سلامت؛ اختلال مصرف الکل ؛ طبقه بندی بین المللی آماری بیماری های نسخه 9؛
ICU, Intensive Care Unit; MICU, Medical Intensive Care Unit; EHR, Electronic Health Records; AUD, Alcohol Use Disorder; ICD-9, International Statistical Classification of Diseases version 9; MIMIC III, Multiparameter Intelligent Monitoring in Intensive Ca
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
چکیده انگلیسی


• AutoTriage algorithm predicts patient mortality in ICU among AUD patients.
• Multi-dimensional analysis of clinical inputs used to generate mortality risk scores.
• AutoTriage achieves sensitivity of 90% at a specificity of 80% with AUROC of 0.93.
• Mortality predicted 12 h in advance with an Odds Ratio of 36 and accuracy of 81%.
• Improvement of all metrics over MEWS, SAPS II, and SOFA for mortality prediction.

BackgroundHealth information technologies can assist clinicians in the Intensive Care Unit (ICU) by providing additional analysis of patient stability. However, because patient diagnoses can be confounded by chronic alcohol use, the predictive value of existing systems is suboptimal. Through the use of Electronic Health Records (EHR), we have developed computer software called AutoTriage to generate accurate predictions through multi-dimensional analysis of clinical variables. We analyze the performance of AutoTriage on the Alcohol Use Disorder (AUD) subpopulation in this study, and build on results we reported for AutoTriage performance on the general population in previous work.MethodsAUD-related ICD-9 codes were used to obtain a patient population from MIMIC III ICU dataset for a retrospective study. Patient mortality risk score is generated through analysis of eight EHR-based clinical variables. The score is determined by combining weighted subscores, each of which are obtained from singlets, doublets or triplets of one or more of the eight continuous-valued clinical variable inputs. A temporally updating risk score is computed with a continuously revised 12-hour mortality prediction.ResultsAmong AUD patients, in a non-overlapping test set, AutoTriage outperforms existing systems with an Area Under Receiver Operating Characteristic (AUROC) value of 0.934 for 12-h mortality prediction. At a sensitivity of 90%, AutoTriage achieves a specificity of 80%, positive predictive value of 40%, negative predictive value of 89%, and an Odds Ratio of 36.ConclusionsFor mortality prediction, AutoTriage demonstrates improvements in both the accuracy and the Odds Ratio over current systems among the AUD patient population.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computers in Biology and Medicine - Volume 75, 1 August 2016, Pages 74–79
نویسندگان
, , , , , , , , ,