کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5116943 1485219 2017 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Responses of mixed methanotrophic consortia to variable Cu2+/Fe2+ ratios
موضوعات مرتبط
مهندسی و علوم پایه مهندسی انرژی انرژی های تجدید پذیر، توسعه پایدار و محیط زیست
پیش نمایش صفحه اول مقاله
Responses of mixed methanotrophic consortia to variable Cu2+/Fe2+ ratios
چکیده انگلیسی


- Mixed microbial consortia responded differently to variable Cu2+/Fe2+ ratios.
- Cu2+ uptake by the consortium appeared to be regulated, while Fe2+ uptake was more efficient.
- Co-existence of Sphingopyxis and Azospirillum enabled methane oxidation in landfill biomass.
- Methylosinus was dominant at higher Fe2+ concentration in compost biomass.

Methane mitigation in landfill top cover soils is mediated by methanotrophs whose optimal methane (CH4) oxidation capacity is governed by environmental and complex microbial community interactions. Optimization of CH4 remediating bio-filters need to take microbial responses into account. Divalent copper (Cu2+) and iron (Fe2+) are present in landfills at variable ratios and play a vital role in methane oxidation capacity and growth of methanotrophs. This study, as a first of its kind, therefore quantified effects of variable Cu2+ and Fe2+ (5:5, 5:25 and 5:50 μM) ratios on mixed methanotrophic communities enriched from landfill top cover (LB) and compost soils (CB). CH4 oxidation capacity, CH4 removal efficiencies, fatty acids content/profiles and polyhydroxybutyrate (PHB; a biopolymer) contents were also analysed to quantify performance and potential co-product development. Mixed methanotroph cultures were raised in 10 L continuous stirred tank reactors (CSTRs, Bioflo® & Celligen® 310 Fermentor/Bioreactor; John Morris Scientific, Chatswood, NSW, Australia). Community structure was determined by amplifying the V3-V4 region of 16s rRNA gene. Community structure and, consequently, fatty acid-profiles changed significantly with increasing Cu2+/Fe2+ ratios, and responses were different for LB and CB. Effects on methane oxidation capacities and PHB content were similar in the LB- and CB-CSTR, decreasing with increasing Cu2+/Fe2+ ratios, while biomass growth was unaffected. In general, high Fe2+ concentration favored growth of the type -II methanotroph Methylosinus in the CB-CSTR, but methanotroph abundances decreased in the LB-CSTR. Increase in Cu2+/Fe2+ ratio increased the growth of Sphingopyxis in both systems, while Azospirllum was co-dominant in the LB- but absent in the CB-CSTR. After 13 days, methane oxidation capacities and PHB content decreased by ∼50% and more in response to increasing Fe2+ concentrations. Although methanotroph abundance was ∼2% in the LB- (compared to >50% in CB-CSTR), methane oxidation capacities were comparable in the two systems, suggesting that methane oxidation capacity was maintained by the dominant Azospirllum and Sphingopyxis in the LB-CSTR. Despite similar methanotroph inoculum community composition and controlled environmental variables, increasing Cu2+/Fe2+ ratios resulted in significantly different microbial community structures in the LB- and CB-CSTR, indicative of complex microbial interactions. In summary, our results suggest that a detailed understanding of allelopathic interactions in mixed methanotrophic consortia is vital for constructing robust bio-filters for CH4 emission abatement.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Environmental Management - Volume 197, 15 July 2017, Pages 159-166
نویسندگان
, , , , ,