کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5427434 1508628 2017 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Optical properties of black carbon aggregates with non-absorptive coating
ترجمه فارسی عنوان
خواص نوری سنگ آهک کربن سیاه با پوشش غیر جذب شده
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه شیمی طیف سنجی
چکیده انگلیسی


- A simplified model of black carbon aggregate with coating is developed.
- The optical properties of the coated BC aggregates can be calculated efficiently and accurately.
- The effects of non-absorptive coating on BC optical properties are investigated.

This study develops an idealized model to account for the effects of non-absorptive coating on the optical properties of black carbon (BC) aggregates. The classic fractal aggregate is applied to represent realistic BC particles, and the coating is assumed to be spherical. To accelerate the single-scattering simulation, BC monomers that were overlapped with coating sphere (not those completely inside the coating) are slightly moved to avoid overlapping. The multiple-sphere T-matrix method (MSTM) becomes applicable to calculate the optical properties of inhomogeneous particles with any coating amount, and is generally two orders of magnitude faster than the discrete-dipole approximation for particles we considered. Furthermore, the simple spherical coating is found to have similar effects on the optical properties to those based on more complicated coating structure. With the simple particle model and the efficient MSTM, it becomes possible to consider the influence of coating with much more details. The non-absorptive coating of BC aggregates can significantly enhance BC extinction and absorption, which is consistent with previous studies. The absorption of coated aggregates can be over two times stronger than that of BC particles without coating. Besides the coating volume, the relative position between the mass centers of BC aggregate and coating also plays an important role on the optical properties, and should obviously be considered in further studies.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Quantitative Spectroscopy and Radiative Transfer - Volume 187, January 2017, Pages 443-452
نویسندگان
, , , , ,