کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5433852 1509001 2017 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Intracellular responsive dual delivery by endosomolytic polyplexes carrying DNA anchored porous silicon nanoparticles
موضوعات مرتبط
مهندسی و علوم پایه مهندسی مواد بیومتریال
پیش نمایش صفحه اول مقاله
Intracellular responsive dual delivery by endosomolytic polyplexes carrying DNA anchored porous silicon nanoparticles
چکیده انگلیسی

Bioresponsive cytosolic nanobased multidelivery has been emerging as an enormously challenging novel concept due to the intrinsic protective barriers of the cells and hardly controllable performances of nanomaterials. Here, we present a new paradigm to advance nano-in-nano integration technology amenable to create multifunctional nanovehicles showing considerable promise to overcome restrictions of intracellular delivery, solve impediments of endosomal localization and aid effectual tracking of nanoparticles. A redox responsive intercalator chemistry comprised of cystine and 9-aminoacridine is designed as a cross-linker to cap carboxylated porous silicon nanoparticles with DNA. These intelligent nanocarriers are then encapsulated within novel one-pot electrostatically complexed nano-networks made of a zwitterionic amino acid (cysteine), an anionic bioadhesive polymer (poly(methyl vinyl ether-alt-maleic acid)) and a cationic endosomolytic polymer (polyethyleneimine). This combined nanocomposite is successfully tested for the co-delivery of hydrophobic (sorafenib) or hydrophilic (calcein) molecules loaded within the porous core, and an imaging agent covalently integrated into the polyplex shell by click chemistry. High loading capacity, low cyto- and hemo-toxicity, glutathione responsive on-command drug release, and superior cytosolic delivery are shown as achievable key features of the proposed formulation. Overall, formulating drug molecules, DNA and imaging agents, without any interference, in a physico-chemically optimized carrier may open a path towards broad applicability of these cost-effective multivalent nanocomposites for treating different diseases.

193

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Controlled Release - Volume 249, 10 March 2017, Pages 111-122
نویسندگان
, , , , , , , , ,