کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5468140 1518927 2017 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Study on electrochemical performance of multi-wall carbon nanotubes coated by iron oxide nanoparticles as advanced electrode materials for supercapacitors
ترجمه فارسی عنوان
بررسی عملکرد الکتروشیمیایی نانولوله های کربنی چند دیواره پوشش داده شده توسط نانوذرات اکسید آهن به عنوان مواد پیشرفته الکترود برای ابررایانه ها
موضوعات مرتبط
مهندسی و علوم پایه مهندسی مواد سطوح، پوشش‌ها و فیلم‌ها
چکیده انگلیسی


- Fe2O3 was deposited on multi-walled carbon nanotubes by atomic layer deposition.
- Fe2O3 nanocrystallites with particle size less than 10 nm were formed by a simple calcination process.
- Overall electrochemical performances of the Fe2O3@MWNTs composites are dependent on the Fe2O3 loading.
- The specific capacitance is 787 F g−1 at 1 A g−1, and the capacitance retention is 91.6% after 5000 cycles.

Iron oxide was deposited on surface of multi-walled carbon nanotubes (Fe2O3@MWNTs) by atomic layer deposition (ALD). By a following calcination process, the electrochemical performance of the Fe2O3@MWNTs nanocompisites was further improved. From the X-ray diffraction and Raman spectra analysis of nanocomposites, Fe2O3 nanocrystallites were found to be successfully formed after a simple calcination process. The transmission electron microscopy revealed that Fe2O3 nanoparticles with the size of less than 10 nm are uniformly anchored on the surface of MWNTs. The X-ray photoelectron spectroscopy further confirmed that the valence state of iron in the composites is +3 and no other impurities were detected. The Fe2O3@MWNTs nanocomposites were investigated as electrode materials for high-performance supercapacitor. Electrochemical test results exhibited a high specific capacitance with 787 F g−1 at a discharge current density of 1 A g−1 and an outstanding rate performance (72% capacitance retention at 30 A g−1), and even after 5000 cycles the capacity retention was still maintained at 91.6%.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Vacuum - Volume 143, September 2017, Pages 371-379
نویسندگان
, ,