کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5487277 1523502 2017 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Time-dependent rotational stability of dynamic planets with viscoelastic lithospheres
ترجمه فارسی عنوان
ثبات چرخشی وابسته به زمان سیارات دینامیک با لایه های فشرده واسکولاستیک
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات علوم فضا و نجوم
چکیده انگلیسی


- A new mathematical theory of viscoelastic true polar wander (TPW) is proposed.
- On short time scales, this theory matches the elastic limit (limited TPW).
- On long time scales, the rotation axis of a planet is unstable.
- TPW adjustment continues on timescales comparable to the lithospheric decay time.
- For Mars, this adjustment timescale could be up to billions of years.

We extend previous work to derive a non-linear rotational stability theory governing true polar wander (TPW) of terrestrial planets with viscoelastic lithospheres. We demonstrate, analytically and using numerical examples, that our expressions are consistent with previous results in the limiting cases of low and infinite (i.e., purely elastic) viscosity lithospheres. To illustrate the stability theory, we compute TPW on Mars driven by a simple, prescribed mass loading. Our calculations demonstrate that on short time scales relative to the relaxation time of the viscoelastic lithosphere, the rotation axis follows a constrained path that reflects stabilization by remnant strength in the lithosphere, but that on long times scales this stabilization disappears and the load ultimately reaches the equator. Earlier work based on the assumption of a permanent remnant bulge in the case of a purely elastic lithosphere has suggested that Martian TPW would not persist for any significant time after a load is emplaced, and thus an equilibrium stability theory is sufficient to model long-term (order 1 Myr or longer) polar motion of the planet. Our results suggest, in contrast, that TPW on Mars can continue over time scales on the order of the relaxation time of the lithosphere after load emplacement; for sufficiently high lithospheric viscosities, this time scale may be comparable to the age of the planet.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Icarus - Volume 289, June 2017, Pages 34-41
نویسندگان
, , , ,