کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5516215 1542568 2018 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Suppression of soil-borne Fusarium pathogens of peanut by intercropping with the medicinal herb Atractylodes lancea
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم کشاورزی و بیولوژیک دانش خاک شناسی
پیش نمایش صفحه اول مقاله
Suppression of soil-borne Fusarium pathogens of peanut by intercropping with the medicinal herb Atractylodes lancea
چکیده انگلیسی


- Reduction of peanut root rot by A. lancea coincided with a decline of Fusarium spp.
- Soil fungal community composition was more affected than bacteria by A. lancea volatiles.
- A. lancea volatiles suppressed in vitro growth of Fusarium spp.
- A. lancea volatiles decreased Fusarium spp. propagule density in soil.
- Many antifungal substances were detected among the A. lancea rhizome volatiles.

Intercropping has historically been employed as an efficient management strategy to prevent disease outbreaks. Our previous studies indicated that intercropping of peanut with the Chinese medicinal herb, Atractylodes lancea effectively suppressed soil-borne peanut diseases, resulting in increased peanut yields. However, the underlying mechanism is unknown. In this study, the below ground effects of A. lancea on both fungal and bacterial communities in the peanut rhizosphere were investigated using pyrosequencing of the internal transcribed spacer (ITS1) and16S rRNA gene amplicons, respectively. Closed cultivation systems were constructed to investigate the role of volatiles and exudates originating from rhizomes and roots of A. lancea on fungal and bacterial communities. Intercropping with A. lancea significantly altered fungal community composition in the peanut rhizosphere, coinciding with decline of Fusarium root rot and improvement of peanut growth. Volatiles originating from A. lancea rhizome material had more effects on fungal communities than on bacterial communities, and significantly suppressed F. oxysporum growth. Root exudates of A. lancea had no apparent inhibitory effect on F. oxysporum. Gas chromatography-mass spectrometry (GC-MS) analysis revealed 21 volatiles originating from A. lancea rhizome material and terpenes and aromatic hydrocarbons were the most common types. Our results suggest that A. lancea suppressed pathogenic Fusarium populations by means of volatiles from the rhizome. Our results support the idea that intercropping with A. lancea or use of its effective components has a strong potential for managing soil-borne fungal diseases.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Soil Biology and Biochemistry - Volume 116, January 2018, Pages 120-130
نویسندگان
, , , , , ,