کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5517713 1543669 2017 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Limitations in the use of PSMγ, agr, RNAIII, and biofilm formation as biomarkers to define invasive Staphylococcus epidermidis from chronic biomedical device-associated infections
موضوعات مرتبط
علوم زیستی و بیوفناوری بیوشیمی، ژنتیک و زیست شناسی مولکولی بیوشیمی، ژنتیک و زیست شناسی مولکولی (عمومی)
پیش نمایش صفحه اول مقاله
Limitations in the use of PSMγ, agr, RNAIII, and biofilm formation as biomarkers to define invasive Staphylococcus epidermidis from chronic biomedical device-associated infections
چکیده انگلیسی

Staphylococcus epidermidis is a common cause of biomedical device-associated infections. Agr is the major quorum sensing system in staphylococci and regulates virulence factors. Four agr-specificity groups exist in S. epidermidis, and chronic S. epidermidis infections are hypothesised to select for agr-negative phenotypes. Therefore, we investigated S. epidermidis strains from prosthetic joint- and catheter-associated infections to establish i) whether an infection selects for an agr-negative phenotype; ii) the importance of PSMγ and iii) if the agr-specificity group is infection dependent. S. epidermidis nasal isolates from healthy volunteers were used as controls. The distribution of agr-specificity groups was significantly different between infection and control episodes, but did not distinguish between the infection types. PSMγ secretion was used to determine agr-activity and HPLC analysis showed that 44% of prosthetic and 32% of catheter-associated episodes produced no PSMγ in comparison to 8% of the control strains. However, PSMγ expression did not always correlate with RNAIII up-regulation, indicating that PSMγ synthesis is likely influenced by additional post-transcriptional control. The data suggests chronic S. epidermidis infections favour agr-specificity group 1 but the results suggest that they do not select for an agr-negative phenotype. Further studies are required to explore the mechanisms underlying the selection and survival of these S. epidermidis phenotypes isolated from biomedical device-associated infections.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Medical Microbiology - Volume 307, Issue 7, October 2017, Pages 382-387
نویسندگان
, , , , , , ,