کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5531022 1549445 2017 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
DNA methylation and histone deacetylation regulating insulin sensitivity due to chronic cold exposure
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم کشاورزی و بیولوژیک علوم کشاورزی و بیولوژیک (عمومی)
پیش نمایش صفحه اول مقاله
DNA methylation and histone deacetylation regulating insulin sensitivity due to chronic cold exposure
چکیده انگلیسی

In this study, we investigated the causal relationship between chronic cold exposure and insulin resistance and the mechanisms of how DNA methylation and histone deacetylation regulate cold-reduced insulin resistance. 46 adult male mice from postnatal day 90-180 were randomly assigned to control group and cold-exposure group. Mice in cold-exposure group were placed at temperature from -1 to 4 °C for 30 days to mimic chronic cold environment. Then, fasting blood glucose, blood insulin level and insulin resistance index were measured with enzymatic methods. Immunofluorescent labeling was carried out to visualize the insulin receptor substrate 2 (IRS2), Obese receptor (Ob-R, a leptin receptor), voltage-dependent anion channel protein 1 (VDAC1), cytochrome C (cytC), 5-methylcytosine (5-mC) positive cells in hippocampal CA1 area. Furthermore, the expressions of some proteins mentioned above were detected with Western blot. The results showed: ① Chronic cold exposure could reduce the insulin resistance index (P < 0.01) and increase the number of IRS2 positive cells and Ob-R positive cells in hippocampus (P < 0.01). ② The expressions of mitochondrial energy-relative proteins, VDAC1 and cytC, were higher in cold-exposure group than in control group with both immunohistochemical staining and Western blot (P < 0.01). ③ Chronic cold exposure increased DNA methylation and histone deacetylation in the pyramidal cells of CA1 area and led to an increase in the expression of histone deacetylase 1 (HDAC1) and DNA methylation relative enzymes (P < 0.01). In conclusion, chronic cold exposure can improve insulin sensitivity, with the involvement of DNA methylation, histone deacetylation and the regulation of mitochondrial energy metabolism. These epigenetic modifications probably form the basic mechanism of cold-reduced insulin resistance.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Cryobiology - Volume 74, February 2017, Pages 36-42
نویسندگان
, , , , , ,