کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5747030 1618802 2017 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Inhibited transport of graphene oxide nanoparticles in granular quartz sand coated with Bacillus subtilis and Pseudomonas putida biofilms
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم محیط زیست شیمی زیست محیطی
پیش نمایش صفحه اول مقاله
Inhibited transport of graphene oxide nanoparticles in granular quartz sand coated with Bacillus subtilis and Pseudomonas putida biofilms
چکیده انگلیسی


- Effect of biofilms on the transport of GONPs was systematically examined.
- XMCT was used to quantitatively characterize the pore structures of packed columns.
- Biofilms reduced the porosity and narrowed the pore sizes of sand columns.
- The presence of biofilms provides favorable sites for GONPs retention/attachment.

Increasing production and use of graphene oxide nanoparticles (GONPs) boost their wide dissemination in the subsurface environments where biofilms occur ubiquitously, representative of the physical and chemical heterogeneities. This study aimed at investigating the influence of Gram-positive Bacillus subtilis (BS) and Gram-negative Pseudomonas putida (PP) biofilms on the transport of GONPs under different ionic strengths (0.1, 0.5, and 1.0 mM CaCl2) at neutral pH 7.2 in water-saturated porous media. Particularly, the X-ray micro-computed tomography was used to quantitatively characterize the pore structures of sand columns in the presence and absence of biofilms. Our results indicated that the presence of biofilms reduced the porosity and narrowed down the pore sizes of packed columns. Transport experiments in biofilm-coated sand showed that biofilms, irrespective of bacterial species, significantly inhibited the mobility of GONPs compared to that in cleaned sand. This could be due to the Ca2+ complexation, increased surface roughness and charge heterogeneities of collectors, and particularly enhanced physical straining caused by biofilms. The two-site kinetic retention model-fitted value of maximum solid-phase concentration (Smax2) for GONPs was higher for biofilm-coated sand than for cleaned sand, demonstrating that biofilms act as favorable sites for GONPs retention. Our findings presented herein are important to deepen our current understanding on the nature of particle-collector interactions.

291

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Chemosphere - Volume 169, February 2017, Pages 1-8
نویسندگان
, , , , ,