کد مقاله کد نشریه سال انتشار مقاله انگلیسی ترجمه فارسی نسخه تمام متن
5752834 1620308 2017 7 صفحه PDF سفارش دهید دانلود کنید
عنوان انگلیسی مقاله
Complementary online aerosol mass spectrometry and offline FT-IR spectroscopy measurements: Prospects and challenges for the analysis of anthropogenic aerosol particle emissions
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات علم هواشناسی
پیش نمایش صفحه اول مقاله
Complementary online aerosol mass spectrometry and offline FT-IR spectroscopy measurements: Prospects and challenges for the analysis of anthropogenic aerosol particle emissions
چکیده انگلیسی


- Organic aerosol particle types are studied using HR-ToF-AMS and FT-IR spectroscopy.
- Correlations of AMS fragment ions and functional groups are shown.
- Some AMS fragment ions are validated as rather specific markers.
- The prospects and challenges of this integrative analytical approach are discussed.

The aerosol mass spectrometer (AMS) is well established in investigating highly time-resolved dynamics of submicron aerosol chemical composition including organic aerosol (OA). However, interpretation of mass spectra on molecular level is limited due to strong fragmentation of organic substances and potential reactions inside the AMS ion chamber. Results from complementary filter-based FT-IR absorption measurements were used to explain features in high-resolution AMS mass spectra of different types of OA (e.g. cooking OA, cigarette smoking OA, wood burning OA). Using this approach some AMS fragment ions were validated in this study as appropriate and rather specific markers for a certain class of organic compounds for all particle types under investigation. These markers can therefore be used to get deeper insights in the chemical composition of OA based on AMS mass spectra in upcoming studies. However, the specificity of other fragment ions such as C2H4O2+ (m/z 60.02114) remains ambiguous. In such cases, complementary FT-IR measurements allow the interpretation of highly time-resolved AMS mass spectra at the level of molecular functional groups. Furthermore, this study discusses the challenges in reducing inorganic interferences (e.g. from water and ammonium salts) in FT-IR spectra of atmospheric aerosols to decrease spectral uncertainties for better comparisons and, thus, to get more robust results.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Atmospheric Environment - Volume 166, October 2017, Pages 92-98
نویسندگان
, , , ,