کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5861234 1562713 2016 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Benzyl butyl phthalate promotes adipogenesis in 3T3-L1 preadipocytes: A High Content Cellomics and metabolomic analysis
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم محیط زیست بهداشت، سم شناسی و جهش زایی
پیش نمایش صفحه اول مقاله
Benzyl butyl phthalate promotes adipogenesis in 3T3-L1 preadipocytes: A High Content Cellomics and metabolomic analysis
چکیده انگلیسی


- High Content analysis showed BBP induced a dose-dependent lipid accumulation.
- BBP promoted adipogenesis through the induction of C/EBPα and PPARγ.
- BBP dynamically activated adipogenic gene: AdipoQ, Adipsin, FABP4, LPL and FASN.
- A metabolomic analysis identified disturbed metabolic pathways induced by BBP.

Benzyl butyl phthalate (BBP) has been known to induce developmental and reproductive toxicity. However, its association with dysregulation of adipogenesis has been poorly investigated. The present study aimed to examine the effect of BBP on the adipogenesis, and to elucidate the underlying mechanisms using the 3T3-L1 cells. The capacity of BBP to promote adipogenesis was evaluated by multiple staining approaches combined with a High Content Cellomics analysis. The dynamic changes of adipogenic regulatory genes and proteins were examined, and the metabolite profile was identified using GC/MC based metabolomic analysis. The High Content analysis showed BBP in contrast with Bisphenol A (BPA), a known environmental obesogen, increased lipid droplet accumulation in a similar dose-dependent manner. However, the size of the lipid droplets in BBP-treated cells was significantly larger than those in cells treated with BPA. BBP significantly induced mRNA expression of transcriptional factors C/EBPα and PPARγ, their downstream genes, and numerous adipogenic proteins in a dose and time-dependent manner. Furthermore, GC/MC metabolomic analysis revealed that BBP exposure perturbed the metabolic profiles that are associated with glyceroneogenesis and fatty acid synthesis. Altogether, our current study clearly demonstrates that BBP promoted the differentiation of 3T3-L1 through the activation of the adipogenic pathway and metabolic disturbance.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Toxicology in Vitro - Volume 32, April 2016, Pages 297-309
نویسندگان
, , , ,