کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6456994 1420662 2017 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Multipurpose experimental characterization of smart nanocomposite cement-based materials for thermal-energy efficiency and strain-sensing capability
ترجمه فارسی عنوان
خصوصیات تجربی چند منظوره مواد سیمانی مبتنی بر نانو کامپوزیت های هوشمند برای کارایی انرژی حرارتی و توانایی سنجش فشار
کلمات کلیدی
کامپوزیت های چند منظوره چند منظوره مبتنی بر سیمان، مواد سیمان بر اساس، فناوری نانو، بهره وری انرژی حرارتی در ساختمان ها، مواد حساس خود، سنسورهای مبتنی بر سیمان،
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی کاتالیزور
چکیده انگلیسی


- Smart cement-based materials with nanoinclusions are experimentally characterized.
- Carbon nanotubes, nanofibers, graphene nanoplatelets and carbon black are used.
- Morphological, optic-energy, thermal and electrical properties are investigated.
- GNPs increase thermal conductivity while CNTs optimize piezoresistive properti.es.
- Nanofillers can be useful for cement-based smart materials and energy efficiency.

Novel nanocomposite smart multifunctional materials are emerging as promising technological advances in construction industry, where thermal-energy efficiency needs should meet environmental sustainability and mechanical performance requirements. In this view, new cement-based materials showed encouraging results in terms of added functional properties combining all the above mentioned capabilities with electrical conductivity and self-sensing potential for a variety of field scopes, e.g. vibration measurements, damage detection, structural health monitoring, electromagnetic shielding, self-heating pavements for deicing and more. The present paper deals with the development and multipurpose experimental characterization of cement-based materials doped with different carbon nanoinclusions consisting of: multi-walled carbon nanotubes, carbon nanofibers, carbon black, and graphene nanoplatelets. The study investigates morphology, optical features, thermal characteristics, electrical properties and strain-sensing capability of the different composites, through a campaign of in-lab experimental measurements. The results highlight the peculiar behavior of each composite material, which is strictly related to the adopted nanoinclusions, that reveal to be suitable for specific purposes. In particular, all carbon nanoinclusions are seen to reduce solar reflectance capability, while they produce negligible variations in thermal emittance. Graphene nanoplatelets represent the most effective nanoinclusion to increase thermal conductivity and diffusivity, which is related to their structural and geometrical characteristics and better capability to distribute the thermal wave. Consistently, the same graphene samples produce the largest electrical conductivity and capacitance. However, multi-walled carbon nanotubes, even though providing comparatively smaller contributions to electrical conductivity, are seen to be the best nanoinclusions for providing strain-sensing capabilities to the cement-based composites.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Solar Energy Materials and Solar Cells - Volume 161, March 2017, Pages 77-88
نویسندگان
, , , , , , , ,