کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6476655 1425390 2017 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Evolution of pore structure, submaceral composition and produced gases of two Chinese coals during thermal treatment
ترجمه فارسی عنوان
تکامل ساختار منافذ، ترکیب زیر خاکی و گازهای تولید شده از دو زغال سنگ چینی در طول عملیات حرارتی
کلمات کلیدی
تولید گاز، ساختار پوسته، زغال سنگ، عملیات حرارتی، پترولوژی زغال سنگ،
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی مهندسی شیمی (عمومی)
چکیده انگلیسی


- Collinite, cutinite, resinite and telalginite contribute to massive gases release.
- Unsound pore structure has an important impact on pore compressibility.
- Heating is an effective way to improve the adsorption pores by NMR investigation.
- Massive seepage pores and fissures originate in dominant semifusinite and collinite.
- Enhanced CBM recovery from low rank coal by thermal treatment should be promising.

To better understand coal performance during underground coal gasification, coal combustion and in-situ enhancement of coalbed methane recovery by heating, the variable gases generation and pore structure of subbituminous coal and bituminous coal with thermal treatment related to organic petrology are investigated. Multiple experiments including organic petrology analysis from an optical microscope, gases analysis from thermogravimetry coupled with mass spectrometry (TG-MS), pore structure analysis using scanning electron microscopy (SEM), mercury intrusion porosimetry (MIP) and nuclear magnetic resonance (NMR) were constructed to simulate the thermal treatment of coal at elevated temperatures. The coal petrology results exhibit that the submacerals that contribute to the gases generation were significantly reduced when temperature was over 400 °C, especially for collinite, cutinite, resinite and telalginite. And there was only a slight difference in CO2 content between subbituminous coal and bituminous coal, which was reduced in the bituminous coal. On the other hand, thermal decomposition of functional groups of submacerals at over 400 °C also creates more seepage pores and fractures. Pore structure analysis indicates that the adsorption pores were observed with aggregates of plate-like particles leading to slit-shaped pores below 200 °C. However, the massive seepage pores and fissures (over 35.42% in volume) were created in the high-temperature-treated coals, especially between 400 °C and 600 °C. Furthermore, the dominant seepage pores and fissures formed at high temperature (> 400 °C) are due to the pyrolysis of semifusinite and collinite submacerals. These investigations may serve to characterize gases generation and pore evolution of coal during thermal treatment.

145

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Fuel Processing Technology - Volume 156, February 2017, Pages 298-309
نویسندگان
, , , , ,