کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
7205688 1468626 2018 27 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Effects of heat accumulation on microstructure and mechanical properties of Ti6Al4V alloy deposited by wire arc additive manufacturing
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی صنعتی و تولید
پیش نمایش صفحه اول مقاله
Effects of heat accumulation on microstructure and mechanical properties of Ti6Al4V alloy deposited by wire arc additive manufacturing
چکیده انگلیسی
Complex thermal behaviour during fabrication plays an import role in the geometrical formation and mechanical properties of Ti6Al4V components manufactured using Wire Arc Additive Manufacturing (WAAM) technology. In this study, through in-situ temperature measurement, the heat accumulation and thermal behaviour during the gas tungsten wire arc additive manufacturing (GT-WAAM) process are presented. The effects of heat accumulation on microstructure and mechanical properties of additively manufactured Ti6Al4V parts were studied by means of optical microscopy (OM), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectrometer (EDS) and standard tensile tests, aiming to explore the feasibility of fabricating Ti6Al4V parts by GT-WAAM using localized gas shielding. The results show that due to the influences of thermal accumulation, the layer's surface oxidation, microstructural evolution, grain size, and crystalline phase vary along the building direction of the as-fabricated wall, which creates variations in mechanical properties and fracture features. It has also been found that it is necessary to maintain the process interpass temperature below 200 °C to ensure an acceptable quality of Ti6Al4V part fabricated using only localized gas shielding in an otherwise open atmosphere. This research provides a better understanding of the effects of heat accumulation on targeted deposition properties during the WAAM process, which will benefit future process control, improvement, and optimization.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Additive Manufacturing - Volume 23, October 2018, Pages 151-160
نویسندگان
, , , , ,