کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
7832833 1503514 2018 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A facile approach to fabricating silver-coated cotton fiber non-woven fabrics for ultrahigh electromagnetic interference shielding
ترجمه فارسی عنوان
یک رویکرد فشرده برای ساخت فیبرهای نبافته پارچه ای با پوشش نقره ای برای محافظت در برابر تداخل الکترومغناطیسی فوق العاده
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه شیمی شیمی تئوریک و عملی
چکیده انگلیسی
Electromagnetic radiation pollution has become a serious threat to human health. Wearable materials with high electromagnetic interference (EMI) shielding are highly desirable to protect people far from electromagnetic radiation. In this study, we prepared flexible and wearable materials with ultrahigh EMI shielding via a facile wet electroless deposition of Ag on surface of cotton fibers (Ag@CFs) in non-woven fabrics. High conductivity of ∼3333 S/m and excellent EMI shielding effectiveness (SE) of ∼71 dB were achieved by only costing the wet deposition time of 10 s with 1.61 vol% Ag coating layers, which was far more than the requirement for common commercial EMI SE of 30 dB. The EMI SE of the materials could reach ∼111 dB when the Ag plating time was 3 min. The ultrahigh EMI shielding performance was ascribed to cell-like configuration, which is the abundant interfaces and porous structure in the Ag@CFs non-woven fabrics, and the voids in Ag layers. The electromagnetic radiation, which was reflected at the interfaces and then absorbed in the composites, was hard to escape from the cell-like configurations. Moreover, the prepared Ag@CFs films could also maintain high EMI SE by suffering dozens of washing times or one thousands of bending times. For example, there were only reduction of a few dB in the EMI SE for the non-woven fabrics with the coating time of 3 min after washing 20 times or bending 1000 times. Therefore, this work gave a new strategy for fabricating wearable materials with high-performance EMI shielding.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Surface Science - Volume 458, 15 November 2018, Pages 236-244
نویسندگان
, , , , , ,