کد مقاله کد نشریه سال انتشار مقاله انگلیسی ترجمه فارسی نسخه تمام متن
805273 1468214 2016 14 صفحه PDF 46 صفحه WORD دانلود کنید
عنوان انگلیسی مقاله
Algorithms for Bayesian network modeling and reliability assessment of infrastructure systems
ترجمه فارسی عنوان
الگوریتم هایی جهت مدلسازی شبکه بیزی و ارزیابی قابلیت اطمینان سیستم های زیرساختی
کلمات کلیدی
شبکه های بیزی. سیستم و مدل سازی. الگوریتم؛ ارزیابی قابلیت اطمینان؛ تحلیل ریسک؛ سیستم های زیرساخت
فهرست مطالب مقاله
چکیده

کلمات کلیدی

1.مقدمه

2- پیش زمینه

1-2 روش هایی برای ارزیابی قابلیت اطمینان سیستم شامل شبکه های بیزی (BNs)

2-2 محدودیت های فعلی در مدلسازی شبکه بیزی برای سیستم های بزرگ

3-2 جداول احتمال شرطی در ساخت شبکه بیزی

شکل 1 – شبکه بیزی سیستم متشکل از n مؤلفه

4-2 مجموعه برشی حداقل  برای الگوریتم فشرده سازی

۳-الگوریتم فشرده سازی

1-3 رمزنگاری طول- اجرا

2-3 رمزنگاری لمپل-زیو

4-الگوریتم استنتاجی

1-4 الگوریتم حذف متغیر

2-4 الگوریتم درخت انشعابی

شکل ۲ – نمودار گردشی الگوریتم فشرده سازی

4-4 الگوریتم هایی برای مؤلفه های وابسته

5-مثال آزمایشی

۱-۵ بکارگیری الگوریتم فشرده سازی

۲-۵ کاربرد الگوریتم استنتاجی

3-5 سیستم های نمونه بسط یافته

1-3-5 عملکرد : استنتاج

2-3-5 عملکرد : فضای ذخیره حافظه

۳-۳-۵ عملکرد : راندمان محاسباتی

6- نتیجه گیری
ترجمه چکیده
الگوریتم های جدیدی جهت ایجاد مدلسازی سیستم های زیرساختی بزرگ و پیچیده به عنوان شبکه های بیزی (BNs) توسعه و گسترش یافته اند. این موارد شامل الگوریتم های فشرده سازی که به طور چشمگیری فضای ذخیره حافظه لازم را جهت ایجاد مدل BN کاهش می دهند و همچنین الگوریتم در حال به روزرسانی که بر روی ماتریس های فشرده شده استنتاج می نماید، می شود. این الگوریتم ها یکی از اصلی ترین موانع را جهت استفاده گسترده از BNs ها برای ارزیابی قابلیت اطمینان سیستم، برای نمونه اطلاعات در حال افزایش به صورت نمائی که باید به صورت تعدادی از مؤلفه ها در افزایشات سیستمی ذخیره شوند، برطرف می نمایند. الگوریتم های فشرده سازی و استنتاجی ارائه شده در سیستم های نمونه ای شرح داده شده و بکار برده شده اند تا عملکرد آنها در مقایسه با دیگر الگوریتم های موجود بررسی شود. مقادیر زیادی از صرفه جویی های صورت گرفته در نیازمندی به فضای ذخیره حافظه با استفاده از الگوریتم های جدید نشان داده شده است که امکان مدلسازی شبکه بیزی و آنالیز قابلیت اطمینان را برای سیستم های زیرساختی بزرگتر فراهم می کنند.
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی مکانیک
چکیده انگلیسی


• Novel algorithms developed for Bayesian network modeling of infrastructure systems.
• Algorithm presented to compress information in conditional probability tables.
• Updating algorithm presented to perform inference on compressed matrices.
• Algorithms applied to example systems to investigate their performance.
• Orders of magnitude savings in memory storage requirement demonstrated.

Novel algorithms are developed to enable the modeling of large, complex infrastructure systems as Bayesian networks (BNs). These include a compression algorithm that significantly reduces the memory storage required to construct the BN model, and an updating algorithm that performs inference on compressed matrices. These algorithms address one of the major obstacles to widespread use of BNs for system reliability assessment, namely the exponentially increasing amount of information that needs to be stored as the number of components in the system increases. The proposed compression and inference algorithms are described and applied to example systems to investigate their performance compared to that of existing algorithms. Orders of magnitude savings in memory storage requirement are demonstrated using the new algorithms, enabling BN modeling and reliability analysis of larger infrastructure systems.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Reliability Engineering & System Safety - Volume 156, December 2016, Pages 134–147
نویسندگان
, ,