کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
9989714 1580764 2005 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Cannabinoids provide neuroprotection against 6-hydroxydopamine toxicity in vivo and in vitro: Relevance to Parkinson's disease
موضوعات مرتبط
علوم زیستی و بیوفناوری علم عصب شناسی عصب شناسی
پیش نمایش صفحه اول مقاله
Cannabinoids provide neuroprotection against 6-hydroxydopamine toxicity in vivo and in vitro: Relevance to Parkinson's disease
چکیده انگلیسی
Cannabinoids have been reported to provide neuroprotection in acute and chronic neurodegeneration. In this study, we examined whether they are also effective against the toxicity caused by 6-hydroxydopamine, both in vivo and in vitro, which may be relevant to Parkinson's disease (PD). First, we evaluated whether the administration of cannabinoids in vivo reduces the neurodegeneration produced by a unilateral injection of 6-hydroxydopamine into the medial forebrain bundle. As expected, 2 weeks after the application of this toxin, a significant depletion of dopamine contents and a reduction of tyrosine hydroxylase activity in the lesioned striatum were noted, and were accompanied by a reduction in tyrosine hydroxylase-mRNA levels in the substantia nigra. None of these events occurred in the contralateral structures. Daily administration of Δ9-tetrahydrocannabinol (Δ9-THC) during these 2 weeks produced a significant waning in the magnitude of these reductions, whereas it failed to affect dopaminergic parameters in the contralateral structures. This effect of Δ9-THC appeared to be irreversible since interruption of the daily administration of this cannabinoid after the 2-week period did not lead to the re-initiation of the 6-hydroxydopamine-induced neurodegeneration. In addition, the fact that the same neuroprotective effect was also produced by cannabidiol (CBD), another plant-derived cannabinoid with negligible affinity for cannabinoid CB1 receptors, suggests that the antioxidant properties of both compounds, which are cannabinoid receptor-independent, might be involved in these in vivo effects, although an alternative might be that the neuroprotection exerted by both compounds might be due to their anti-inflammatory potential. As a second objective, we examined whether cannabinoids also provide neuroprotection against the in vitro toxicity of 6-hydroxydopamine. We found that the non-selective cannabinoid agonist HU-210 increased cell survival in cultures of mouse cerebellar granule cells exposed to this toxin. However, this effect was significantly lesser when the cannabinoid was directly added to neuronal cultures than when these cultures were exposed to conditioned medium obtained from mixed glial cell cultures treated with HU-210, suggesting that the cannabinoid exerted its major protective effect by regulating glial influence to neurons. In summary, our results support the view of a potential neuroprotective action of cannabinoids against the in vivo and in vitro toxicity of 6-hydroxydopamine, which might be relevant for PD. Our data indicated that these neuroprotective effects might be due, among others, to the antioxidant properties of certain plant-derived cannabinoids, or exerted through the capability of cannabinoid agonists to modulate glial function, or produced by a combination of both mechanisms.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurobiology of Disease - Volume 19, Issues 1–2, June–July 2005, Pages 96-107
نویسندگان
, , , , ,