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Guaranteeing that synaptic plasticity leads to effective learning

requires a means for assigning credit to each neuron for its

contribution to behavior. The ‘credit assignment problem’

refers to the fact that credit assignment is non-trivial in

hierarchical networks with multiple stages of processing. One

difficulty is that if credit signals are integrated with other inputs,

then it is hard for synaptic plasticity rules to distinguish credit-

related activity from non-credit-related activity. A potential

solution is to use the spatial layout and non-linear properties of

dendrites to distinguish credit signals from other inputs. In

cortical pyramidal neurons, evidence hints that top-down

feedback signals are integrated in the distal apical dendrites

and have a distinct impact on spike-firing and synaptic

plasticity. This suggests that the distal apical dendrites of

pyramidal neurons help the brain to solve the credit assignment

problem.
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Introduction: the credit assignment problem
The flexibility of learning in animals indicates that the

brain possesses general purpose learning algorithms. A

learning algorithm is a set of rules for translating the

experiences an animal has into changes in their neural

circuits (e.g. synaptic changes). The ultimate goal of a

learning algorithm is to alter the behavioral phenotype of

the animal, helping it to adapt to the environment.

Understanding the brain’s learning algorithms is key to

understanding the biological basis of animal intelligence.

The formal study of learning algorithms often utilizes the

concept of a loss function (also known as a cost function)

[1,2]. Within neuroscience, a loss function provides a

metric for the failure of the current phenotype in achiev-

ing an animal’s goals (Figure 1a) [3]. For example, a loss

function could measure motor slips or sensory prediction

errors. Ideally, the brain would have some way of ensuring

that changes in a neural circuit reduce a given loss

function [3], at least within the environments that the

animal is likely to encounter [4]. To do this, it is useful to

assign ‘credit’ (or ‘blame’) to each neuron or synapse for

its contribution to the loss function [5,6]. However,

outside of very simple neural circuits, credit assignment

calculations are difficult. In a hierarchical sensorimotor

circuit with multiple stages of processing, such as the

mammalian neocortex, the credit that a neuron in a

sensory area deserves for any motor errors depends on

that neuron’s downstream connections to motor circuits

(Figure 1b) [7]. The difficulty of assigning credit in the

context of hierarchical circuits is known as the credit
assignment problem [8].

Typically, solutions to the credit assignment problem

have been explored in neural network models that treat

each neuron as a single voltage compartment with a single

type of output (e.g. a scalar firing-rate or spike train)

[7,9��,10��,11–14,15�]. This strategy is reasonable at face

value: it fits with the basic properties of neural computa-

tion and helps to reduce mathematical complexity. How-

ever, there are two reasons that this strategy may have

inadvertently made it more difficult to identify the brain’s

solution to the credit assignment problem. First, if each

neuron is calculating everything using a single voltage

value, then any incoming signals about credit (e.g. feed-

back from another cortical area) must be integrated with

other signals about sensory data, or they must arrive at a

separate time. The result is that any credit related signals

must be carefully timed or they risk becoming entangled

with other ongoing calculations (Figure 1c,d). There is

some evidence of clock-like phasic activity in various

parts of the brain [16], but none of these seem to exhibit

the clear segregation between feedforward and feedback

activity required for credit assignment. Second, if a neu-

ron only has one type of output, for example, a firing rate,

then it is not immediately obvious how neural circuits can

disambiguate credit related activity from basic informa-

tion transmission (Figure 1f).

Of course, real neurons are not single compartments —

they possess complex dendritic trees that integrate dif-

ferent signals in different locations [17–27], often in non-

linear manners that have important functional implica-

tions [28–44]. Moreover, active channels in dendrites can

drive spiking behavior that is different from regular
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spiking [45,46]. One possibility, then, is to segregate

credit signals into dendritic compartments, where (i) they

can be kept separate from other ongoing calculations

(Figure 1e), and (ii) they can drive unique spike-wave-

forms that signal credit information (Figure 1g). Thus,

there has been a growing interest in understanding

whether one of the solutions to the credit assignment

problem lies in dendritic computation [47,48��,49��,50�]
(and see also IMN Sacramento et al. arXiv: 1801.00062).

What counts as evidence for credit
assignment?
The ideal experiment for understanding credit assign-

ment in the brain would be to measure a loss function

explicitly, then demonstrate that a given synaptic plastic-

ity mechanism was responsible for ensuring reductions in

that loss function during learning. Such experiments are

currently outside of our technical reach, though, because

it is often unclear how we can identify a loss function in

the brain and track its progress over time [3]. Further-

more, there is no reason to assume that the brain explicitly

represents any of the loss functions it may be reducing.

Indeed, at the neural level, it is possible to reduce a loss

function without there being any direct neural correlate of

said loss function to find [51,52].

Given these realities, the best strategy for scientists to

study credit assignment depends on the level of analysis.

For example, if the desire is to examine whether credit

assignment actually shapes activity in the brain based on

the extent to which different neurons contribute to a task

[53], then it is possible to use tetrode recordings and

similar approaches [54]. In contrast, if the desire is to

understand the cellular mechanisms by which credit is
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Figure 1

Loss functions and credit assignment. (a) Illustration of a loss function. A loss function provides a metric for the performance of an agent on some

learning task. In a neural circuit, loss functions are functions of synaptic strength. The goal of learning is to find synaptic strengths that minimize

the loss function. Here, an arbitrary loss function is plotted for a network with only two synapses. (b) Illustration of the credit assignment problem.

A multilayer neural network with two neurons per layer is shown. Circles indicate neurons, with green circles indicating highly active neurons.

Arrows indicate synaptic connections and the width of the arrows indicates synaptic strength. If an input arrives at the left-hand neuron, its activity

causes strong activation in the downstream left-hand neurons, due to strong synaptic connections. However, if the loss function specifies that the

target was to give an output at the right-hand, then an error is generated. To make it more likely that the right-hand output neuron would be

activated, it would help to increase the feedforward activity of the right-hand middle neuron, X. In other words, this neuron deserves some ‘credit’

for the incorrect output. Credit assignment can be achieved if the error signal at the top-level is sent back to the middle-layer. (c) However, if the

middle-layer neuron is a single compartment, this error signal, E, would be integrated with the ongoing activity, X, thereby altering the ‘forward’

computation being performed by this neuron. (d) A possible solution is to have carefully timed phases where feedforward and feedback signals

are received at distinct times. (e) An alternative is to integrate the credit assignment signal in a separate dendritic compartment. (f) and (g)

Illustration of the use of specialized spike-waveforms for credit assignment. (f) If incoming inputs and credit signals both produce the same type of

spiking output in a neuron (indicated by ‘X’ and ‘E’, respectively), it is difficult to differentiate credit assignment from ongoing processing. (g) In

contrast, if credit signals drive dendritic non-linearities that produce unique spike-waveforms (e.g. a complex spike or high-frequency burst), then

it is easy to differentiate credit assignment from other processes.
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