Flow-contractible configurations and group connectivity of signed graphs

Jiaao Li ${ }^{\text {a }}$, Rong Luo ${ }^{\text {b }}$, Hongping Ma ${ }^{\text {c,* }}$, Cun-Quan Zhang ${ }^{\text {d }}$
a School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071, China
${ }^{\text {b }}$ Department of Mathematics, West Virginia University, Morgantown, WV 26505, United States
${ }^{\text {c }}$ School of Mathematics and Statistics, Jiangsu Normal University, Xuzhou 221116, China
${ }^{\text {d }}$ Department of Mathematics, West Virginia University, Morgantown, WV 26505, United States

ARTICLE INFO

Article history:

Received 17 October 2017
Received in revised form 4 August 2018
Accepted 7 August 2018

Abstract

Jaeger, Linial, Payan and Tarsi (JCTB, 1992) introduced the concept of group connectivity as a generalization of nowhere-zero flow for graphs. In this paper, we introduce group connectivity for signed graphs and establish some fundamental properties. For a finite abelian group A, it is proved that an A-connected signed graph is a contractible configuration for A flow problem of signed graphs. In addition, we give sufficient edge connectivity conditions for signed graphs to be A-connected and study the group connectivity of some families of signed graphs.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

The notion of nowhere-zero flows of ordinary graphs was introduced by Tutte [15,16] as a dual problem to vertex coloring of graphs embedded on an orientable surface. The definition of nowhere-zero flows of signed graphs naturally comes from the study of embeddings of graphs in non-orientable surfaces, where nowhere-zero flows emerge as the dual notion to local tensions.

The group connectivity, as a generalization of the flow problem, is a concept introduced by Jaeger, Linial, Payan and Tarsi [5]. Furthermore, graphs with certain group connectivity are contractible configurations for flow problems.

In this paper, the concept and results about group connectivity [5] for ordinary graphs are extended to signed graphs.

1.1. Group connectivity for ordinary graphs

Throughout the paper, we consider finite graphs. Loops and multiple edges are allowed. We refer [21] for undefined notations and terminology on nowhere-zero flows.

Let A be a non-trivial (additive) abelian group with additive identity 0 , and let $A^{*}=A \backslash\{0\}$ be the set of nonzero elements in A. Let D be an orientation of G. Define $F(G, A)=\{f \mid f: E(G) \mapsto A\}$ and $F^{*}(G, A)=\left\{f \mid f: E(G) \mapsto A^{*}\right\}$. For each $f \in F(G, A)$, the boundary of f is the function $\partial f: V(G) \mapsto A$ defined by $\partial f(v)=\sum_{e \in E_{D}^{+}(v)} f(e)-\sum_{e \in E_{D}^{-}(v)} f(e)$ for each vertex $v \in V(G)$. (D, f) is called an A-flow if $\partial f=0$, and is called a nowhere-zero A-flow if moreover $f \in F^{*}(G, A)$. If $A=\mathbb{Z}$ and $1 \leq|f(e)| \leq k-1$ for each $e \in E(G)$, the flow (D, f) is called a nowhere-zero k-flow. Tutte's flow conjectures are some of the major open problems in graph theory. The 3-flow conjecture states that every 4-edge-connected graph admits a nowhere-zero 3-flow and the 5-flow

[^0]conjecture claims that every bridgeless graph admits a nowhere-zero 5-flow. The readers are referred to [9] for a recent survey on this topic.

Jaeger, Linial, Payan and Tarsi [5] introduced the concept of group connectivity as a generalization of nowhere-zero flows of graphs. It is obvious that $\sum_{v \in V(G)} \partial f(v)=0$ for any $f \in F^{*}(G, A)$. This motivates the definition of A-boundary function. A mapping $b: V(G) \mapsto A$ is called an A-boundary of G if $\sum_{v \in V(G)} b(v)=0$. Let $Z(G, A)$ be the collection of all A-boundaries of G. G is A-connected if, for any $b \in Z(G, A)$, there is a function $f \in F^{*}(G, A)$ such that $\partial f=b$, that is, for every vertex $v \in V(G)$,

$$
\partial f(v)=\sum_{e \in E_{D}^{+}(v)} f(e)-\sum_{e \in E_{D}^{-}(v)} f(e)=b(v)
$$

Jaeger et al. [5] conjectured that every 5-edge-connected graph is \mathbb{Z}_{3}-connected, and every 3-edge-connected graph is \mathbb{Z}_{5} connected. These two conjectures imply Tutte's 3-flow conjecture and 5-flow conjecture, respectively. Jaeger et al. [5] proved that every 4-edge-connected graph is A-connected for any abelian group A with $|A| \geq 4$. Thomassen's breakthrough result in [14] confirmed the conjecture of Jaeger et al. for 8-edge-connected graphs, and it was later improved by Lovász et al. [10] that every 6-edge-connected graph is \mathbb{Z}_{3}-connected. In this paper, we will introduce the concept of group connectivity for signed graphs and extend the above mentioned results to signed graphs with slightly higher edge-connectivity.

1.2. Preliminary for signed graphs

A signed graph is a graph G with a mapping $\sigma: E(G) \mapsto\{1,-1\}$. An edge $e \in E(G)$ is positive if $\sigma(e)=1$ and negative if $\sigma(e)=-1$. The mapping σ, called signature, is sometimes implicit in the notation of a signed graph and will be specified when needed. Both negative and positive loops are allowed in signed graphs, while positive loops do not affect any flow property. We use $E_{\sigma}^{+}(G)$ and $E_{\sigma}^{-}(G)$ to denote the set of positive edges and the set of negative edges in G, respectively. If no confusion occurs, we simply use E_{σ}^{+}for $E_{\sigma}^{+}(G)$ and E_{σ}^{-}for $E_{\sigma}^{-}(G)$. An orientation τ assigns each edge of (G, σ) as follows: if $e=x y$ is a positive edge, then the edge is either oriented away from x and toward y or away from y and toward x; if $e=x y$ is a negative edge, then the edge is oriented either away from both x and y or towards both x and y. We call $e=x y$ a sink edge (a source edge, respectively) if it is oriented away from (towards, respectively) both x and y.

Let τ be an orientation of (G, σ). For each vertex $v \in V(G)$, let $H_{G}(v)$ be the set of half edges incident with v. Define $\tau(h)=1$ if the half edge $h \in H_{G}(v)$ is oriented away from v, and $\tau(h)=-1$ if the half edge $h \in H_{G}(v)$ is oriented towards v. Denote $d_{\tau}^{+}(v)=\left|E_{\tau}^{+}(v)\right|\left(d_{\tau}^{-}(v)=\left|E_{\tau}^{-}(v)\right|\right.$, respectively) to be the outdegree (indegree, respectively) of (G, σ) under orientation τ, where $E_{\tau}^{+}(v)\left(E_{\tau}^{-}(v)\right.$, respectively) denotes the set of outgoing (ingoing, respectively) half edges incident with v.

The switch operation ζ on an edge-cut S is a mapping $\zeta: E(G) \mapsto\{-1,1\}$ such that $\zeta(e)=-1$ if $e \in S$ and $\zeta(e)=1$ otherwise. Two signatures σ and σ^{\prime} are equivalent if there exists an edge-cut S such that $\sigma(e)=\sigma^{\prime}(e) \zeta(e)$ for every edge $e \in E(G)$, where ζ is the switch operation on the edge-cut S. For a signed graph (G, σ), let \mathcal{X} denote the collection of all signatures equivalent to σ. The negativeness of (G, σ) is denoted by $\epsilon_{N}(G, \sigma)=\min \left\{\left|E_{\sigma^{\prime}}^{-}(G)\right|: \forall \sigma^{\prime} \in \mathcal{X}\right\}$. We use ϵ_{N} for short if the signed graph (G, σ) is understood from the context. A signed graph is called k-unbalanced if $\epsilon_{N} \geq k$. Note that 1-unbalanced signed graph is also known as unbalanced signed graph.

A circuit is balanced if $\epsilon_{N}=0$ and is unbalanced otherwise (i.e. $\epsilon_{N}=1$). A signed graph (G, σ) is called a barbell if either

- G consists of two unbalanced circuits C_{1}, C_{2} with $\left|V\left(C_{1}\right) \cap V\left(C_{2}\right)\right|=1$, or
- G consists of two vertex disjoint unbalanced circuits C_{1}, C_{2} and a path P, which has one end in $V\left(C_{1}\right)$ and one end in $V\left(C_{2}\right)$ and has no interior vertices in $V\left(C_{1}\right) \cup V\left(C_{2}\right)$.

A signed circuit is either a balanced circuit or a barbell.
The signature is usually implicit in the notation of a signed graph if no confusion occurs. We define contraction in signed graphs as follows. For an edge $e \in E(G)$, the contraction G / e is the signed graph obtained from G by identifying the two ends of e, and then deleting the resulting positive loop if $e \in E_{\sigma}^{+}$, but keeping the resulting negative loop if $e \in E_{\sigma}^{-}$, For $X \subseteq E(G)$, the contraction G / X is the signed graph obtained from G by contracting all edges in X. If H is a subgraph of G, we use G / H for $G / E(H)$. An immediate observation is that the contraction operation does not decrease negativeness. That is, $\epsilon_{N}(G / H) \geq \epsilon_{N}(G)$ for any subgraph H of G.

1.3. Group connectivity of signed graphs

Let A be an abelian group, $2 A=\{2 \alpha: \alpha \in A\}$, and $A^{*}=A \backslash\{0\}$. For a signed graph G, we still denote $F(G, A)=\{f \mid f:$ $E(G) \mapsto A\}$ and $F^{*}(G, A)=\left\{f \mid f: E(G) \mapsto A^{*}\right\}$. Let τ be an orientation of (G, σ). For each $f \in F(G, A)$, the boundary of f is the function $\partial f: V(G) \mapsto A$ defined by

$$
\partial f(v)=\sum_{h \in H_{G}(v)} \tau(h) f\left(e_{h}\right)
$$

where e_{h} is the edge of G containing h and " \sum " refers to the addition in A. If $\partial f=0$, then (τ, f) is called an $A-f l o w ~ o f ~ G$. In addition, (τ, f) is a nowhere-zero A-flow if $f \in F^{*}(G, A)$ and $\partial f=0$.

https://daneshyari.com/en/article/10118302

Download Persian Version:

https://daneshyari.com/article/10118302

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: lijiaao@nankai.edu.cn (J. Li), rluo@math.wvu.edu (R. Luo), mahp@jsnu.edu.cn (H. Ma), cqzhang@math.wvu.edu (C.-.Q Zhang).

