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a b s t r a c t

Jaeger, Linial, Payan and Tarsi (JCTB, 1992) introduced the concept of group connectivity
as a generalization of nowhere-zero flow for graphs. In this paper, we introduce group con-
nectivity for signed graphs and establish some fundamental properties. For a finite abelian
group A, it is proved that an A-connected signed graph is a contractible configuration for A-
flow problem of signed graphs. In addition, we give sufficient edge connectivity conditions
for signed graphs to be A-connected and study the group connectivity of some families of
signed graphs.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

The notion of nowhere-zero flows of ordinary graphswas introduced by Tutte [15,16] as a dual problem to vertex coloring
of graphs embedded on an orientable surface. The definition of nowhere-zero flows of signed graphs naturally comes from
the study of embeddings of graphs in non-orientable surfaces, where nowhere-zero flows emerge as the dual notion to local
tensions.

The group connectivity, as a generalization of the flow problem, is a concept introduced by Jaeger, Linial, Payan and
Tarsi [5]. Furthermore, graphs with certain group connectivity are contractible configurations for flow problems.

In this paper, the concept and results about group connectivity [5] for ordinary graphs are extended to signed graphs.

1.1. Group connectivity for ordinary graphs

Throughout the paper, we consider finite graphs. Loops and multiple edges are allowed. We refer [21] for undefined
notations and terminology on nowhere-zero flows.

LetAbe a non-trivial (additive) abelian groupwith additive identity 0, and letA∗
= A\{0}be the set of nonzero elements in

A. Let D be an orientation of G. Define F (G, A) = {f |f : E(G) ↦→ A} and F∗(G, A) = {f |f : E(G) ↦→ A∗
}. For each f ∈ F (G, A), the

boundary of f is the function ∂ f : V (G) ↦→ A defined by ∂ f (v) =
∑

e∈E+

D (v)f (e)−
∑

e∈E−

D (v)f (e) for each vertex v ∈ V (G). (D, f )
is called an A-flow if ∂ f = 0, and is called a nowhere-zero A-flow if moreover f ∈ F∗(G, A). If A = Z and 1 ≤ |f (e)| ≤ k− 1 for
each e ∈ E(G), the flow (D, f ) is called a nowhere-zero k-flow. Tutte’s flow conjectures are some of the major open problems
in graph theory. The 3-flow conjecture states that every 4-edge-connected graph admits a nowhere-zero 3-flow and the 5-flow

* Corresponding author.
E-mail addresses: lijiaao@nankai.edu.cn (J. Li), rluo@math.wvu.edu (R. Luo), mahp@jsnu.edu.cn (H. Ma), cqzhang@math.wvu.edu (C.-.Q Zhang).

https://doi.org/10.1016/j.disc.2018.08.007
0012-365X/© 2018 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.disc.2018.08.007
http://www.elsevier.com/locate/disc
http://www.elsevier.com/locate/disc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.disc.2018.08.007&domain=pdf
mailto:lijiaao@nankai.edu.cn
mailto:rluo@math.wvu.edu
mailto:mahp@jsnu.edu.cn
mailto:cqzhang@math.wvu.edu
https://doi.org/10.1016/j.disc.2018.08.007


3228 J. Li et al. / Discrete Mathematics 341 (2018) 3227–3236

conjecture claims that every bridgeless graph admits a nowhere-zero 5-flow. The readers are referred to [9] for a recent survey
on this topic.

Jaeger, Linial, Payan and Tarsi [5] introduced the concept of group connectivity as a generalization of nowhere-zero flows
of graphs. It is obvious that

∑
v∈V (G)∂ f (v) = 0 for any f ∈ F∗(G, A). This motivates the definition of A-boundary function. A

mapping b : V (G) ↦→ A is called an A-boundary of G if
∑

v∈V (G)b(v) = 0. Let Z(G, A) be the collection of all A-boundaries of G.
G is A-connected if, for any b ∈ Z(G, A), there is a function f ∈ F∗(G, A) such that ∂ f = b, that is, for every vertex v ∈ V (G),

∂ f (v) =

∑
e∈E+

D (v)

f (e) −

∑
e∈E−

D (v)

f (e) = b(v).

Jaeger et al. [5] conjectured that every 5-edge-connected graph is Z3-connected, and every 3-edge-connected graph is Z5-
connected. These two conjectures imply Tutte’s 3-flow conjecture and 5-flow conjecture, respectively. Jaeger et al. [5] proved
that every 4-edge-connected graph is A-connected for any abelian group A with |A| ≥ 4. Thomassen’s breakthrough result
in [14] confirmed the conjecture of Jaeger et al. for 8-edge-connected graphs, and it was later improved by Lovász et al. [10]
that every 6-edge-connected graph is Z3-connected. In this paper, we will introduce the concept of group connectivity for
signed graphs and extend the above mentioned results to signed graphs with slightly higher edge-connectivity.

1.2. Preliminary for signed graphs

A signed graph is a graph G with a mapping σ : E(G) ↦→ {1, −1}. An edge e ∈ E(G) is positive if σ (e) = 1 and negative if
σ (e) = −1. The mapping σ , called signature, is sometimes implicit in the notation of a signed graph and will be specified
when needed. Both negative and positive loops are allowed in signed graphs, while positive loops do not affect any flow
property. We use E+

σ (G) and E−
σ (G) to denote the set of positive edges and the set of negative edges in G, respectively. If no

confusion occurs, we simply use E+
σ for E+

σ (G) and E−
σ for E−

σ (G). An orientation τ assigns each edge of (G, σ ) as follows: if
e = xy is a positive edge, then the edge is either oriented away from x and toward y or away from y and toward x; if e = xy
is a negative edge, then the edge is oriented either away from both x and y or towards both x and y. We call e = xy a sink
edge (a source edge, respectively) if it is oriented away from (towards, respectively) both x and y.

Let τ be an orientation of (G, σ ). For each vertex v ∈ V (G), letHG(v) be the set of half edges incidentwith v. Define τ (h) = 1
if the half edge h ∈ HG(v) is oriented away from v, and τ (h) = −1 if the half edge h ∈ HG(v) is oriented towards v. Denote
d+

τ (v) = |E+
τ (v)| (d−

τ (v) = |E−
τ (v)|, respectively) to be the outdegree (indegree, respectively) of (G, σ ) under orientation τ ,

where E+
τ (v)(E−

τ (v), respectively) denotes the set of outgoing (ingoing, respectively) half edges incident with v.
The switch operation ζ on an edge-cut S is a mapping ζ : E(G) ↦→ {−1, 1} such that ζ (e) = −1 if e ∈ S and ζ (e) = 1

otherwise. Two signatures σ and σ ′ are equivalent if there exists an edge-cut S such that σ (e) = σ ′(e)ζ (e) for every edge
e ∈ E(G), where ζ is the switch operation on the edge-cut S. For a signed graph (G, σ ), let X denote the collection of all
signatures equivalent to σ . The negativeness of (G, σ ) is denoted by ϵN (G, σ ) = min{|E−

σ ′ (G)| : ∀σ ′
∈ X }. We use ϵN for

short if the signed graph (G, σ ) is understood from the context. A signed graph is called k-unbalanced if ϵN ≥ k. Note that
1-unbalanced signed graph is also known as unbalanced signed graph.

A circuit is balanced if ϵN = 0 and is unbalanced otherwise (i.e. ϵN = 1). A signed graph (G, σ ) is called a barbell if either
• G consists of two unbalanced circuits C1, C2 with |V (C1) ∩ V (C2)| = 1, or
• G consists of two vertex disjoint unbalanced circuits C1, C2 and a path P , which has one end in V (C1) and one end in

V (C2) and has no interior vertices in V (C1) ∪ V (C2).
A signed circuit is either a balanced circuit or a barbell.
The signature is usually implicit in the notation of a signed graph if no confusion occurs. We define contraction in signed

graphs as follows. For an edge e ∈ E(G), the contraction G/e is the signed graph obtained from G by identifying the two
ends of e, and then deleting the resulting positive loop if e ∈ E+

σ , but keeping the resulting negative loop if e ∈ E−
σ , For

X ⊆ E(G), the contraction G/X is the signed graph obtained from G by contracting all edges in X . If H is a subgraph of G, we
use G/H for G/E(H). An immediate observation is that the contraction operation does not decrease negativeness. That is,
ϵN (G/H) ≥ ϵN (G) for any subgraph H of G.

1.3. Group connectivity of signed graphs

Let A be an abelian group, 2A = {2α : α ∈ A}, and A∗
= A \ {0}. For a signed graph G, we still denote F (G, A) = {f |f :

E(G) ↦→ A} and F∗(G, A) = {f |f : E(G) ↦→ A∗
}. Let τ be an orientation of (G, σ ). For each f ∈ F (G, A), the boundary of f is the

function ∂ f : V (G) ↦→ A defined by

∂ f (v) =

∑
h∈HG(v)

τ (h)f (eh),

where eh is the edge of G containing h and ‘‘
∑

’’ refers to the addition in A. If ∂ f = 0, then (τ , f ) is called an A-flow of G. In
addition, (τ , f ) is a nowhere-zero A-flow if f ∈ F∗(G, A) and ∂ f = 0.
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