
Discrete Mathematics 341 (2018) 3249–3270

Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

The pinnacle set of a permutation
Robert Davis a,1, Sarah A. Nelson b, T. Kyle Petersen c,*, Bridget E. Tenner c

a Department of Mathematics, Michigan State University, East Lansing, MI 48824, United States
b Schort School of Mathematics and Computing Sciences, Lenoir-Rhyne University, Hickory, NC 28601, United States
c Department of Mathematical Sciences, DePaul University, Chicago, IL 60614, United States

a r t i c l e i n f o

Article history:
Received 15 May 2017
Received in revised form 7 August 2018
Accepted 9 August 2018

Keywords:
Peak set
Descent set
Permutation statistic

a b s t r a c t

The peak set of a permutation records the indices of its peaks. These sets have been
studied in a variety of contexts, including recent work by Billey, Burdzy, and Sagan, which
enumerated permutations with prescribed peak sets. In this article, we look at a natural
analogue of the peak set of a permutation, instead recording the values of the peaks. We
define the ‘‘pinnacle set’’ of a permutationw to be the set {w(i) : i is a peak ofw}. Although
peak sets and pinnacle sets mark the same phenomenon for a given permutation, the
behaviors of these sets differ in notable ways as distributions over the symmetric group. In
the work below, we characterize admissible pinnacle sets and study various enumerative
questions related to these objects.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Let Sn denote the set of permutations of [n] = {1, 2, . . . , n}, whichwewill alwayswrite aswords,w = w(1)w(2) · · · w(n).
An ascent of a permutationw is an index i such thatw(i) < w(i+1), while a descent is an index i such thatw(i) > w(i+1). A
peak is a descent that is preceded by an ascent, whereas a valley is an ascent that is preceded by a descent. This terminology
refers to the shape of the graph of w, that is, the set of points (i, w(i)).

Example 1.1. The descents of 315264 ∈ S6 are 1, 3, and 5, and the ascents are 2 and 4. The peaks are 3 and 5, while the
valleys are 2 and 4.

The descent set of a permutation w, denoted Des(w), is the collection of its descents,

Des(w) = {i : w(i) > w(i + 1)} ⊆ [n − 1],

while the peak set of a permutation w, denoted Pk(w), is the collection of its peaks,

Pk(w) = {i : w(i − 1) < w(i) > w(i + 1)} ⊆ {2, 3, . . . , n − 1}.

Note in particular that the descent set completely determines the peak set:

Pk(w) = {i > 1 : i ∈ Des(w) and i − 1 ̸∈ Des(w)}.
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Any subset of {1, 2, . . . , n − 1} is the descent set of some permutation in Sn, but the same cannot be said for peak sets. First
of all, peaks cannot occur in the first or last positions of a permutation, so Pk(w) ⊆ {2, . . ., n − 1} for any w ∈ Sn. Moreover,
peaks cannot occur in consecutive positions, so if i ∈ Pk(w) then i± 1 ̸∈ Pk(w). This characterization of peak sets, as subsets
of {2, . . . , n − 1} with no consecutive elements, turns out to imply that the number of distinct peaks sets is given by the
Fibonacci numbers.

It has long been known that counting permutations according to the number of descents gives rise to the Eulerian
numbers, while the number of permutations with a given descent set is also well known; see, e.g., [20, Example 2.2.4]. More
recently Billey, Burdzy, and Sagan [3] considered the related enumerative question for peaks: howmany permutations in Sn
have a given peak set? One of their results is that for a fixed set S, the number of w ∈ Sn for which Pk(w) = S is a power
of two times a polynomial in n, and they give techniques for explicit computation of this polynomial in special cases. As a
follow up to this work, Kasraoui [14] verified their related conjecture about which peak sets of a given cardinality maximize
the number of permutations in Sn for a given n.

In the present article, we study analogous questions related to peaks, but rather than tracking peaks by their positions
(x-coordinates in the graph of the permutation), we use their values (y-coordinates).

Definition 1.2. A pinnacle of a permutation w is a value w(i) such that w(i − 1) < w(i) > w(i + 1); equivalently, j is a
pinnacle of w if and only if w−1(j) ∈ Pk(w). The pinnacle set of w is

Pin(w) = {w(i) : i ∈ Pk(w)}.

Certainly |Pk(w)| = |Pin(w)|, but the sets themselves need not be the same, as we now demonstrate.

Example 1.3. If w = 315264, then Pk(w) = {3, 5} and Pin(w) = {5, 6}.

The definition of pinnacle sets leads naturally to questions about the value

pS(n) := |{w ∈ Sn : Pin(w) = S}|. (1)

While similar notation was used to denote the peak polynomial, e.g. in [3,4,7], note that pS(n) is counting the number of
permutations with a given pinnacle set S in this paper. The questions we address in this article are the following.

Question 1.4. When is pS(n) > 0? That is, which sets S are the pinnacle set of some permutation in Sn?

Question 1.5. Given a pinnacle set S ⊆ [n], how do we compute pS(n)?

Question 1.6. For a given n, what choice of S ⊆ [n] maximizes or minimizes pS(n)?

In Section 2 we identify conditions under which a set S is the pinnacle set for some permutation, fully answering
Question 1.4.

Definition 1.7. A set S is an n-admissible pinnacle set if there exists a permutation w ∈ Sn such that Pin(w) = S. If S is
n-admissible for some n, then we simply say that S is admissible.

The empty set is always an n-admissible pinnacle set, because it is the pinnacle set of the identity permutation. Examples
of nonempty admissible pinnacle sets are shown in Table 1. The main result about admissible pinnacle sets is the following.

Theorem 1.8 (Admissible Pinnacle Sets). Let S be a nonempty set of integers with max S = m. Then S is an admissible pinnacle
set if and only if both

1. S \ {m} is an admissible pinnacle set, and
2. m > 2|S|.

Moreover, there are
( m−2
⌊m/2⌋

)
admissible pinnacle sets with maximum m, and

1 +

n∑
m=3

(
m − 2
⌊m/2⌋

)
=

(
n − 1

⌊(n − 1)/2⌋

)
,

admissible pinnacle sets S ⊆ [n].

Our characterization of admissible pinnacle sets is in contrast to the characterization of peak sets mentioned earlier.
Whereas the number of peak sets is given by the Fibonacci numbers, here we get a central binomial coefficient.

In Section 3 we develop both a quadratic and a linear recurrence for pS(n), which partially answers Question 1.5. Further,
we identify the following bounds for pS(n) partially answering Question 1.6; the sets which achieve the tight bounds are
constructed in Section 3.3.
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