# Johnson's bijections and their application to counting simultaneous core partitions 

Jineon Baek ${ }^{\text {a }}$, Hayan Nam ${ }^{\text {b }}$, Myungjun $\mathrm{Yu}^{\text {a }}$<br>${ }^{\text {a }}$ University of Michigan, Department of Mathematics, 2074 East Hall, 530 Church Street, Ann Arbor, MI 48109-1043, United States<br>${ }^{\text {b }}$ University of California, Irvine, Department of Mathematics, 340 Rowland Hall, Irvine, CA 92697, United States

## ARTICLE INFO

## Article history:

Received 4 November 2017
Accepted 6 August 2018


#### Abstract

Johnson recently proved Armstrong's conjecture which states that the average size of an $(a, b)$-core partition is $(a+b+1)(a-$ $1)(b-1) / 24$. He used various coordinate changes and one-to-one correspondences that are useful for counting problems about simultaneous core partitions. We give an expression for the number of ( $b_{1}, b_{2}, \ldots, b_{n}$ )-core partitions where $\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$ contains at least one pair of relatively prime numbers. We also evaluate the largest size of a self-conjugate ( $s, s+1, s+2$ )-core partition.


 © 2018 Elsevier Ltd. All rights reserved.
## 1. Introduction

Let $\mathbb{N}$ denote the set of non-negative integers. If $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\ell}\right)$ is an $\ell$-tuple of non-increasing positive integers with $\sum_{i=1}^{\ell} \lambda_{i}=n$, then we call $\lambda$ a partition of $n$. One can visualize $\lambda$ by using Ferrers diagram as in Fig. 1. Each square in a Ferrers diagram is called a cell. By counting the number of cells in its NE (North East) and NW (North West) direction including itself, we define the hook length of a cell. For example, the hook length of the colored cell in Fig. 1 is 6.

We say $\lambda$ is an $a$-core partition (or, simply an $a$-core) if there is no cell whose hook length is divisible by $a$. Similarly, we say a partition is an $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$-core if it is simultaneously an $a_{1}$-core, an $a_{2}$-core, $\ldots$, and an $a_{n}$-core.

Anderson [4] proved that if $a$ and $b$ are coprime, the number of $(a, b)$-cores is Cat ${ }_{a, b}:=\frac{1}{a+b}\binom{a+b}{a}$, which is a generalized Catalan number. Since Anderson [4], many mathematicians have been conducting research on counting simultaneous core partitions and related subjects: [1-3,5,8-11,14-16,18].

[^0]

Fig. 1. $\lambda=(6,3,2,2,1)$.

Armstrong [5] conjectured that if $a$ and $b$ are coprime, the average size of an ( $a, b$ )-core partition is $(a+b+1)(a-1)(b-1) / 24$. Johnson [8] recently proved Armstrong's conjecture by using Ehrhart theory. A proof without Ehrhart theory was given by Wang [13].

In [8], Johnson established a bijection between the set of $(a, b)$-cores and the set

$$
\left\{\left(z_{0}, z_{1}, \ldots, z_{a-1}\right) \in \mathbb{N}^{a}: \sum_{i=0}^{a-1} z_{i}=b \text { and } a \mid \sum_{i=0}^{a-1} i z_{i}\right\}
$$

By showing that the cardinality of this set is $\mathrm{Cat}_{a, b}$, he gave a new proof of Anderson's theorem. Inspired by Johnson's method and this bijection, we count the number of simultaneous core partitions. We find a general expression for the number of $\left(b_{1}, b_{2}, \ldots, b_{n}\right)$-core partitions where $\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$ contains at least one pair of relatively prime numbers. As a corollary, we obtain an alternative proof for the number of ( $s, s+d, s+2 d$ )-core partitions, which was given by Yang-Zhong-Zhou [17] and Wang [13]. Subsequently, we also give a formula for the number of $(s, s+d, s+2 d, s+3 d)$-core partitions.

Many authors have studied core partitions satisfying additional restrictions. For example, Berg and Vazirani [7] gave a formula for the number of $a$-core partitions with largest part $x$. We generalize this formula, giving a formula for the number of $a$-core partitions with largest part $x$ and second largest part $y$.

This paper also includes a result related to the largest size of a simultaneous core partition which has been studied by many mathematicians. For example, Aukerman, Kane and Sze [6, Conjecture 8.1] conjectured that if $a$ and $b$ are coprime, the largest size of an $(a, b)$-core partition is $\left(a^{2}-1\right)\left(b^{2}-1\right) / 24$. This was proved by Tripathi in [12]. It is natural to wonder what would be the largest size of an ( $a, b, c$ )core. Yang-Zhong-Zhou [17] found a formula for the largest size of an $(s, s+1, s+2)$-core. In Section 4, we give a formula for the largest size of a self-conjugate ( $s, s+1, s+2$ )-core partition. We also prove that such a partition is unique (see Theorem 3.3).

The layout of this paper is as follows. In Section 2, we introduce Johnson's c-coordinates and $x$-coordinates for core partitions. In Section 3, we give a formula for the largest size of a self-conjugate $(s, s+1, s+2)$ core partition. In Section 4, using $c$-coordinates, we count the number of $a$-core partitions with given largest part and second largest part. In Section 5, we derive formulas for the number of simultaneous core partitions by using Johnson's $z$-coordinates.

## 2. Review of Johnson's bijections

In this section, we review Johnson's bijections in [8], which are fundamental in this paper. For an integer $a$ greater than 1 , let $\mathbb{P}_{a}$ denote the set of $a$-core partitions. Let

$$
C_{a}:=\left\{\left(c_{0}, c_{1}, \ldots, c_{a-1}\right) \in \mathbb{Z}^{a}: \sum_{i=0}^{a-1} c_{i}=0\right\} .
$$

We first construct a bijective map from $C_{a}$ to $\mathbb{P}_{a}$.

# https://daneshyari.com/en/article/10118307 

Download Persian Version:
https://daneshyari.com/article/10118307

## Daneshyari.com


[^0]:    E-mail addresses: jineon@umich.edu (J. Baek), hayann@uci.edu (H. Nam), myungjuy@umich.edu (M. Yu).

