

Contents lists available at ScienceDirect

European Journal of Combinatorics

journal homepage: www.elsevier.com/locate/ejc

List-edge-colouring planar graphs with precoloured edges

European Journal of Combinatorics

Joshua Harrelson, Jessica McDonald, Gregory J. Puleo

Department of Mathematics and Statistics, Auburn University, Auburn, AL 36849, United States

ARTICLE INFO

Article history: Received 12 September 2017 Accepted 14 July 2018

ABSTRACT

Let *G* be a simple planar graph of maximum degree Δ , let *t* be a positive integer, and let *L* be an edge list assignment on *G* with $|L(e)| \geq \Delta + t$ for all $e \in E(G)$. We prove that if *H* is a subgraph of *G* that has been *L*-edge-colouring of *G*, provided that *H* has maximum degree $d \leq t$ and either $d \leq t - 4$ or Δ is large enough $(\Delta \geq 16 + d$ suffices). If d > t, there are examples for any choice of Δ where the extension is impossible.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper all graphs are simple.

An *edge-colouring* of *G* is an assignment of colours to the edges of *G* so that adjacent edges receive different colours; if at most *k* colours are used we say it is a *k-edge-colouring*. The *chromatic index* of *G*, denoted $\chi'(G)$, is the minimum *k* such that *G* is *k*-edge-colourable. It is obvious that $\chi'(G) \ge \Delta$, where $\Delta := \Delta(G)$ is the maximum degree of *G*, and Vizing's Theorem [12] says that $\chi'(G) \le \Delta + 1$.

In this paper we are looking to edge-colour a graph *G*, but with the constraint that some edges have already been coloured and cannot be changed. In this scenario we have no control over the edge-precolouring—if the edge-precoloured subgraph is *H*, then it will certainly have at least $\chi'(H)$ colours, but it could have many more, perhaps even more than $\chi'(G)$ colours. If we are looking to extend the edge-precolouring to a *k*-edge-colouring of *G*, then we will certainly need that *k* is at least the maximum degree of *G*, and that the edge-colouring of *H* uses at most *k* colours (i.e. is a *k*-edge-colouring). In general we consider the following question, first posed by Marcotte and Seymour [9]:

https://doi.org/10.1016/j.ejc.2018.07.003

0195-6698/© 2018 Elsevier Ltd. All rights reserved.

E-mail addresses: jth0048@auburn.edu (J. Harrelson), mcdonald@auburn.edu (J. McDonald), gjp0007@auburn.edu (G.J. Puleo).

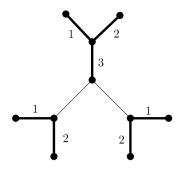


Fig. 1. A graph *G* with maximum degree $\Delta = 3$ with a precoloured subgraph of maximum degree Δ . In order to extend the edge-precolouring to a ($\Delta + t$)-edge-colouring of *G* we need $t \ge \Delta - 1$.

Question 1. Given a graph G with maximum degree Δ and a subgraph H of G that has been $(\Delta + t)$ -edge-coloured, can the edge-precolouring of H be extended to a $(\Delta + t)$ -edge-colouring of G?

Marcotte and Seymour's main result in [9] is a necessary condition for the answer to Question 1 to be "yes"; they prove that this condition is also sufficient when *G* is a multiforest (the condition is rather technical, so we do not state it here). Question 1 was shown to be NP-complete by Colbourn [4], and Marx [10] showed that this is true even when *G* is a planar 3-regular bipartite graph. Since, as Holyer [7] showed, it is NP-complete to decide whether $\chi'(G) = \Delta(G)$ or not, the special case t = 0 of Question 1 is also NP-complete for general graphs. In this paper we focus on Question 1 for planar graphs. Before saying more about planar graphs in particular however, let us make several quick observations about Question 1 in general.

Firstly, if *t* is huge – say at least $\Delta - 1$ – then the answer is *yes*, and moreover, the extension can be done greedily. This is because an edge in *G* sees at most $2(\Delta - 1)$ other edges, and when $t \geq \Delta - 1$, this value is at most $\Delta + t - 1$. If the maximum degree of *H* is Δ then this threshold for *t* is actually sharp. To see this, consider the graph *G* shown in Fig. 1, formed by taking a copy of $K_{1,\Delta}$ with one edge coloured Δ and the rest uncoloured, and joining each leaf to $\Delta - 1$ distinct new vertices via edges coloured 1, 2, ..., $\Delta - 1$. Then *G* has maximum degree Δ , as does its edge-precoloured subgraph. However, in order to extend the edge-precolouring to a $(\Delta + t)$ -edge-colouring of *G*, we need $\Delta - 1$ new colours, which forces $t \geq \Delta - 1$.

Given the above paragraph, Question 1 is only interesting when the maximum degree of H, say d, is strictly less than Δ . Here, we get a natural barrier to extension when d > t, via nearly the same example as above. Let G be the graph shown in Fig. 2, formed by taking a (uncoloured) copy of $K_{1,\Delta}$ and joining each leaf to $d < \Delta$ distinct new vertices, via edges coloured 1, 2, . . . , d. The resulting graph G has maximum degree Δ , and contains a precoloured subgraph H with maximum degree d. However, in order to extend the edge-precolouring to G, we need Δ new colours, meaning that for a $(\Delta + t)$ -edge-colouring of G, we need $d \leq t$.

If it happened that *H* was edge-coloured efficiently (i.e. using at most $\chi'(H)$ colours), then our problem would be significantly reduced. In this special situation, one could use a completely new set of $\chi'(G - E(H))$ colours to extend to an edge-colouring of *G* with at most the following number of colours (according to Vizing's Theorem):

$$\chi'(G - E(H)) + \chi'(H) \le \chi'(G) + \chi'(H) \le \Delta + d + 2.$$
(1)

That is, when *H* has been edge-coloured efficiently, the answer to Question 1 is *yes* whenever $d \le t-2$. Since extension can be impossible when d > t (according to the above paragraph), this makes $d \in \{t-1, t\}$ the only interesting values in this case, with further restrictions if any of the inequalities in (1) are strict. For example, if both *G* and *H* have chromatic index equal to their maximum degrees, then the colouring described above works whenever $d \le t$, and hence we get a sharp threshold. Of course, this only works when *H* has been edge-precoloured efficiently, and in general we have no control over the edge-precolouring on *H*. Download English Version:

https://daneshyari.com/en/article/10118308

Download Persian Version:

https://daneshyari.com/article/10118308

Daneshyari.com