

Contents lists available at ScienceDirect

European Journal of Combinatorics

journal homepage: www.elsevier.com/locate/ejc

On the critical densities of minor-closed classes Colin McDiarmid^a, Michał Przykucki^b

European Journal of Combinatorics

^a Department of Statistics, University of Oxford, United Kingdom ^b School of Mathematics, University of Birmingham, United Kingdom¹

ARTICLE INFO

Article history: Received 17 November 2017 Accepted 2 August 2018

ABSTRACT

Given a minor-closed class \mathcal{A} of graphs, let $\beta_{\mathcal{A}}$ denote the supremum over all graphs in \mathcal{A} of the ratio of edges to vertices. We investigate the set *B* of all such values $\beta_{\mathcal{A}}$, taking further the project begun by Eppstein. Amongst other results, we determine the small values in *B* (those up to 2); we show that *B* is 'asymptotically dense'; and we answer some questions posed by Eppstein.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

For a given graph *G*, let v(G), e(G) denote its number of vertices and edges, respectively. The *density* $\rho(G)$ of a graph *G* is e(G)/v(G), the number of edges per vertex. Thus the average degree of *G* is $2\rho(G)$. Given a class *A* of graphs (closed under isomorphism), we let A_n denote the set of graphs in *A* on *n* vertices; let

 $e^*_{\mathcal{A}}(n) = \max_{G \in \mathcal{A}_n} e(G)$

(where $e_{\mathcal{A}}^*(n) = 0$ if \mathcal{A}_n is empty); and let

$$\beta_{\mathcal{A}} = \sup_{G \in \mathcal{A}} \rho(G) = \sup_{n \ge 1} e_{\mathcal{A}}^*(n)/n \text{ and } \lambda_{\mathcal{A}} = \limsup_{n \to \infty} e_{\mathcal{A}}^*(n)/n.$$

A class of graphs is *proper* if it is non-empty and does not contain all graphs. A graph *G* contains a graph *H* as a *minor* if we can obtain a graph isomorphic to *H* from a subgraph of *G* by using edge contractions (discarding any loops and multiple edges, we are interested in simple graphs). A class \mathcal{A} of graphs is *minor-closed* if whenever $G \in \mathcal{A}$ and *H* is a minor of *G* then *H* is in \mathcal{A} .

Let \mathcal{A} be a proper minor-closed class of graphs. Then $\beta_{\mathcal{A}}$ is finite, as shown by Mader [11], and is called the *critical density* for \mathcal{A} . By Lemma 17 of [5], we always have $e_{\mathcal{A}}^*(n)/n \to \lambda_{\mathcal{A}}$ as $n \to \infty$:

https://doi.org/10.1016/j.ejc.2018.08.002

0195-6698/© 2018 Elsevier Ltd. All rights reserved.

E-mail addresses: cmcd@stats.ox.ac.uk (C. McDiarmid), m.j.przykucki@bham.ac.uk (M. Przykucki).

¹ During a large part of this project, the second author was affiliated with St Anne's College and the Mathematical Institute of the University of Oxford.

see also Norin [16], where $\operatorname{limd}(\mathcal{A})$ is the same as $2\lambda_{\mathcal{A}}$. Thus $\lambda_{\mathcal{A}}$ is called the *limiting density* of \mathcal{A} . By definition $\lambda_{\mathcal{A}} \leq \beta_{\mathcal{A}}$. Suppose for example that \mathcal{A} is the minor-closed family of graphs G such that at most one component has a cycle, and any such component has at most 5 vertices: then $\lambda_{\mathcal{A}} = 1$ (because for $n \ge 5$ the densest graphs in \mathcal{A}_n consist of K_5 and a tree on n - 5 vertices), and $\beta_{\mathcal{A}} = 2$ (because K_5 is the densest graph in \mathcal{A}). If \mathcal{A} is the class of series–parallel graphs (those with no minor K_4) then for each $n \ge 2$, each edge-maximal graph in \mathcal{A} has 2n - 3 edges (see [14] for more on this), so $\lambda_{\mathcal{A}} = \beta_{\mathcal{A}} = 2$.

We are interested in the critical and limiting densities of proper minor-closed classes of graphs. The main object of study in this paper is the set of critical densities

 $B = \{\beta_A : A \text{ is a proper minor-closed class of graphs}\}.$

We shall see shortly that for the corresponding set

 $L = \{\lambda_A : A \text{ is a proper minor-closed class of graphs}\}$

of limiting densities we have L = B.

Given a proper minor-closed class A of graphs, a graph G is an *excluded minor* for A if G is not in A but each proper minor of G is in A. If H is the set of excluded minors for A, it is easy to see that A is the class of all graphs with no minor in H: we write A = Ex(H). By the Robertson–Seymour theorem [17], the set H is finite.

A class of graphs is called *decomposable* when a graph *G* is in the class if and only if each component of *G* is. It is easy to see that a minor-closed class of graphs is decomposable if and only if each excluded minor is connected. By Lemma 5 in [14], if \mathcal{A} is a decomposable minor-closed class of graphs, then $e_A^*(n)/n \to \beta_{\mathcal{A}}$ as $n \to \infty$, and so $\lambda_{\mathcal{A}} = \beta_{\mathcal{A}}$. Let

 $B_1 = \{\beta_A : A \text{ is a proper decomposable minor-closed class of graphs}\}$

be the set of critical densities of decomposable minor-closed classes (so $B_1 \subseteq B$ trivially).

We call a graph *G* minor-balanced if each minor of *G* has density at most that of *G*, and strictly minorbalanced (or density-minimal [5]) if each proper minor has density strictly less than that of *G*. If *G* is minor-balanced with density $\rho(G) = \beta > 0$, and we let \mathcal{A} be the decomposable class of graphs such that each component is a minor of *G*, then clearly $\beta_{\mathcal{A}} = \lambda_{\mathcal{A}} = \beta$. In this case, we say that the density β is achievable, and that β is the maximum density for \mathcal{A} . For example, K_5 is (strictly) minor-balanced with density 2, so 2 is an achievable density. Let

 $A = \{e(G)/v(G) : G \text{ is a minor-balanced graph}\}$

be the set of densities of minor-balanced graphs.

The first theorem presented here is a general statement concerning the structure of the set *B* and describing the relationships between the sets *A*, *B*, B_1 and *L*. It is largely taken from Eppstein [5] and contains his Theorems 19 and 20. Given a set $S \subseteq \mathbb{R}$, we let \overline{S} denote its closure and let S' denote the set of accumulation (or limit) points.

Theorem 1 (a). The set B of critical densities is countable, closed and well-ordered by $\langle ;$ and (b) $\overline{A} = B = B_1 = L$ and A' = B'.

Indeed it seems that more may be known, and each critical (or limiting) density is rational. This is given as Theorem 8.3 in Norin's survey [16], where a 'glimpse' of its lengthy proof is given, based on unpublished work of Kapadia and Norin: see also the recent paper of Kapadia [9] on minor-closed classes of matroids. For further results and conjectures see [16].

We shall see shortly that the set *B* is unbounded (indeed, by Theorem 5, if $\beta \in B$ then $1 + \beta \in B$). It follows from the first part of Theorem 1 that *B* is nowhere dense. For, given $x \ge 0$, the set $\{\beta \in B : \beta > x\}$ has a least element x^+ , and the non-empty open interval (x, x^+) is disjoint from *B*. In contrast, *B* is 'asymptotically dense', in the following sense. For each $x \ge 0$, let the 'gap above x' in *B* be $\delta_B(x) = x^+ - x$. Then *B* is asymptotically dense, in that $\delta_B(x) = o(1)$ as $x \to \infty$; and indeed we have the following result. Download English Version:

https://daneshyari.com/en/article/10118309

Download Persian Version:

https://daneshyari.com/article/10118309

Daneshyari.com