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A B S T R A C T

Stockbridge dampers are primarily used to suppress or reduce Aeolian vibrations of transmission lines. The
number of resonant frequencies characterizes the effectiveness of the Stockbridge damper. Aeolian vibrations
refers to the vibration of conductor cables in the range of 3–150 Hz. Unlike the primitive Stockbridge damper
which has only two resonant frequencies, the asymmetric Stockbridge damper exhibits up to four resonant
frequencies. The numerical simulations and parametric studies conducted previously showed a correlation be-
tween the increase of natural frequencies and the change in the geometry of the counterweight. This paper
presents an analytical model of a novel Aeolian vibration damper with an increased number of resonant fre-
quencies. The analytical model is used to deduce the resonant frequencies of the damper. A 3D finite element
model is developed to validate the analytical model. The natural frequencies and the subsequent mode shapes of
both analytical and finite element models are presented. Experiment is conducted to validate the proposed
models.

1. Introduction

Aeolian vibrations can cause fatigue and eventual failure of the
transmission line. These are the most common kinds of vibrations ob-
served in transmission lines and are caused by vortex shedding due to
the laminar flow of wind. These low amplitude vibrations are char-
acterized by frequencies between 3 and 150 Hz. The vibrations are
noticed in the vertical plane, causing alternating bending stresses and
eventual failure of the conductor cable. The catastrophic failure of the
transmission line from Cowal junction to Longwood in London was due
to Aeolian vibrations [1]. Several other recent incidents in Ontario and
Manitoba were attributed to Aeolian vibrations [2,3]. I.F.Lazar et al.,
address this issue in their work on vibration suppression of cables [4].

The Stockbridge damper is one of the most common used dampers
in controlling Aeolian vibrations. The conventional damper has two
counter weights connected by a messenger cable. This assembly is hung
from the conductor cable using an aluminum clamp. The absorption of
energy is possible only if the natural frequencies of the damper are
tuned to cover the range of Strouhal frequencies. The primitive
Stockbridge damper developed by George H. Stockbridge in 1925, is
termed as symmetric Stockbridge damper or 2R damper since the
counter weights on both sides are symmetric, and the system possesses

two resonant frequencies in the Strouhal frequency range [5]. The
modern asymmetric Stockbridge damper or the 4R damper has unequal
counterweights, and possesses four resonant frequencies [6]. Fig. 1
shows a commercially available asymmetric Stockbridge damper. It has
unequal counter weights, and the length of the messenger cable on both
sides is also unequal.

One of the leading concerns in designing new transmission lines is
the efficiency of the Stockbridge damper. With a growing need for
better dampers, design improvements have gained enormous attention
[6]. Tuning the counterweights, length, and cross-section of the mes-
senger cable can increase the number of resonant frequencies (i.e.
natural frequencies falling within the range of the entire Strouhal fre-
quency spectrum) of the Stockbridge damper, thus resulting in a sig-
nificant performance improvement.

Numerous authors have developed mathematical models for asym-
metric Stockbridge dampers [7–9]. Among them, the latest was devel-
oped by Barry et al., [10], in which the authors presented explicit ex-
pressions for the frequency equation and mode shapes of an asymmetric
Stockbridge damper.

A common approach used by several researchers is to experimen-
tally determine the natural frequencies from the impedance curve
[11–23]. The technical preliminary considerations showcase two
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methods of testing- the basic method and the direct method. The basic
method is based on measuring the energy loss due to the damper, with
the stockbridge damper attached to a test span of the cable. On the
other hand, in the direct method, the stockbridge damper is directly
mounted on an electro dynamic shaker, and only vertical excitation is
imposed to determine the resonant frequencies [24,25]. The sources
also mention that the basic method is desirable for an analysis of the
whole system(cable and damper). The direct method is preferred to
basic method out of technical and economic considerations. In the ex-
periments conducted by Wanger et al., a constant displacement of 1mm
peak to peak was used with a frequency sweep between 2.5 and 35 Hz
[26]. Lara-Lopex et al., also conducted similar experiments with a
constant peak to peak displacement of 2.7 mm [27]. However, the
measurement standards, as mentioned in requirements and tests for
Stockbridge type aeolian vibration dampers (IEC 61 897) recommend
testing the Stockbridge damper at a constant velocity [28].

This paper presents a novel vibration damper using analytical and
finite element models. The messenger cable is modeled as a Euler-
Bernoulli beam, and the cable is assumed to behave linearly. The
governing equations of motion and boundary conditions are derived
using Hamilton’s principle. The frequency equation is obtained analy-
tically and experiment is conducted to validate the proposed model. It is
should be noted that the present work is an extension of the work by
Vaja et al. [29].

2. Analytical model

A full scale solid model of the vibration damper is shown in Fig. 2.
The mathematical model of the whole Vibration damper will be

enormous. To simplify the computation, a half model of the vibration
damper is used. Fig. 3 shows the schematic of the half model of the
vibration damper. Three coordinate systems(O O,1 2, and O3) are used.
The model is treated as a three-beam and three-mass system. The first
coordinate system O1 is at the clamp with mass M1 at the other end. The
second and third coordinate systems are on either sides of the mass M1,
with mass M2 and mass M3 at their respective extreme ends. The mass
M1 is considered to have rotation about axis perpendicular to the length
of messenger cable, while mass M2 and M3 are considered to be point
masses. The vibration displacement along the j coordinate is given by

W W,1 2 and W3 respectively in the first, second and third coordinate
systems.

The kinetic and potential energy of the system are given by Eqs. (1)
and (2), respectively
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The primes in the above equations represent differentiation with
respect to x, and differentiation with respect to time is represented by
dots. E is Youngs modulus, I I,1 2 and I3 are the area moment of inertia of
the messenger cable and beams respectively. J is the rotational inertia
of the mass M L,1 1 is the length, and m1 is the mass per unit length of the
cable. L L,2 3 are the lengths and m m,2 3 are the mass per unit length of
the beams respectively. Using Hamilton’s principle, the equations of
motion of the system are obtained as
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1 1 1 1 (3)
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2 2 2 2 (4)
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3 3 3 3 (5)

Assuming the system exhibits harmonic motion, the following
equations can be written

=W x t F x e( , ) ( ) iωt
1 1 1 (6)

=W x t G x e( , ) ( ) iωt
2 2 2 (7)

=W x t H x e( , ) ( ) iωt
3 2 3 (8)

where ω is the natural frequency and the mode shapes are given as

= + + +F x a β x a β x a β x a β x( ) sin cos sinh cosh1 1 1 1 2 1 1 3 1 1 4 1 1 (9)

= + + +G x a β x a β x a β x a β x( ) sin cos sinh cosh2 5 2 2 6 2 2 7 2 2 8 2 2 (10)

= + + +H x a β x a β x a β x a β x( ) sin cos sinh cosh3 9 3 3 10 3 3 11 3 3 12 3 3 (11)

Since the cable is fixed at the left end, the displacement and slope at
this point are zero. Therefore the boundary conditions at =x 01 are:

=W t(0, ) 0;1 (12)

′ =W t(0, ) 0;1 (13)

At =x L1 1 the right end of the cable meets the mass M1. At this point
the displacement is assumed to be equal, but the slope is opposite in
direction due to the choice of reference coordinate. Hence,

Fig. 1. Asymmetric Stockbridge damper.

Fig. 2. Vibration damper.

Fig. 3. Schematic of the quarter model of Vibration damper.
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