
Neural Networks 108 (2018) 172–191

Contents lists available at ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

Estimation of neural connections from partially observed neural
spikes
Taishi Iwasaki a,*, Hideitsu Hino b, Masami Tatsuno c, Shotaro Akaho d, Noboru Murata a

a Department of Electrical Engineering and Bioscience, Waseda University, Okubo 3-4-1, Shinjuku-ku, Tokyo 169-0072, Japan
b Department of Statistical Modeling, The Institute of Statistical Mathematics, 10-3, Midori-cho, Tachikawa, Tokyo, 190-8562, Japan
c Department of Neuroscience, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta T1K 6T5, Canada
d Mathematical Neuroinformatics Group, National Institute of Advanced Industrial Science and Technology, Umezono 1-1-1 Tsukuba, Ibaraki 305-8568,
Japan

a r t i c l e i n f o

Article history:
Received 21 January 2018
Received in revised form 31 May 2018
Accepted 31 July 2018
Available online 18 August 2018

Keywords:
Effective connectivity
Spike data
Graph
Partial observation

a b s t r a c t

Plasticity is one of the most important properties of the nervous system, which enables animals to adjust
their behavior to the ever-changing external environment. Changes in synaptic efficacy between neurons
constitute one of the major mechanisms of plasticity. Therefore, estimation of neural connections is
crucial for investigating information processing in the brain. Although many analysis methods have been
proposed for this purpose, most of them suffer from one or all the followingmathematical difficulties: (1)
only partially observed neural activity is available; (2) correlations can include both direct and indirect
pseudo-interactions; and (3) biological evidence that a neuron typically has only one type of connection
(excitatory or inhibitory) should be considered. To overcome these difficulties, a novel probabilistic
framework for estimating neural connections from partially observed spikes is proposed in this paper.
First, based on the property of a sum of random variables, the proposed method estimates the influence
of unobserved neurons on observed neurons and extracts only the correlations among observed neurons.
Second, the relationship between pseudo-correlations and target connections is modeled by neural
propagation in a multiplicative manner. Third, a novel information-theoretic framework is proposed for
estimating neuron types. The proposed method was validated using spike data generated by artificial
neural networks. In addition, it was applied to multi-unit data recorded from the CA1 area of a rat’s
hippocampus. The results confirmed that our estimates are consistent with previous reports. These
findings indicate that the proposed method is useful for extracting crucial interactions in neural signals
as well as in other multi-probed point process data.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

One of the most important properties of the brain is its ability
to modify its architecture on the basis of experience. This phe-
nomenon, which is known as plasticity, enables living organisms
to flexibly adjust their behavior to the external environment and
improve their chances of survival. Various studies have shown that
changes in synaptic connections constitute the primary mecha-
nism of plasticity, in which many types of neurotransmitters and
receptors are involved. Although the detailed processes of how
synaptic efficacy is modified are complex, detecting the overall
change in neural connections is essential for investigating informa-
tion processing in the brain. Recent advancements in experimental
technologies, such as multi-electrode recording from a freely be-
having animal, enable us to record the activities of a large number
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of neurons simultaneously for extended periods (Tatsuno, Lipa, &
McNaughton, 2006). After spike sorting of the multi-unit activity
(MUA) data, sorted single-unit activity (SUA) data are obtained.
SUA represents the timing of spike occurrence of each neuron, and
it can be considered as a point process. Many studies have inves-
tigated the correlational properties of SUA data with the objective
of understanding system-level information processing in the brain
(Brown, Kass, &Mitra, 2004; Gerstein & Perkel, 1969; Hino, Takano,
& Murata, 2015; Perkel, Gerstein, & Moore, 1967; Shimazaki,
Amari, Brown, & Grün, 2012; Takano, Hino, Yoshikawa, & Murata,
2015). Toward this end, methods based on pairwise neuronal
correlations, such as cross-correlation (Barthó et al., 2004; Wil-
son & McNaughton, 1994) and joint peristimulus time histogram
(Aertsen, Gerstein, Habib, & Palm, 1989; Ito & Tsuji, 2000) have
been widely adopted. For instance, in the context of memory con-
solidation, Wilson and McNaughton (1994) estimated functional
neural interactions in the CA1 area of the hippocampus by means
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of cross-correlation functions. They showed that pairwise correla-
tions inducedduring a behavior task epochwere sustainedduring a
post-task non-REM sleep epoch, thereby supporting the conjecture
that reactivation of behaviorally induced neural activity during
sleep (memory reactivation) plays an important role in memory
consolidation. Other approaches based on graph structure estima-
tion methods, such as sparse inverse covariance selection (SICS),
have been also adopted (Banerjee, Ghaoui, & dAspremont, 2008;
Friedman, Hastie, & Tibshirani, 2008; Scheinberg & Rish, 2009).
SICS assumes that observed data are generated from a Gaussian
distribution and estimates a graph structure as its inverse covari-
ance matrix. Efficient algorithms for SICS have been proposed,
and they can estimate the functional connections of a network
composed of numerous neurons. However, the above-mentioned
methods suffer from several mathematical difficulties. First, owing
to their focus on pairwise relationships, they cannot capture high-
order correlations that might result in pseudo-correlations with
pairwisemeasurements. Second, they generally provide functional
correlations, which lack directional properties as a fundamental
feature; therefore, it is difficult to discuss the direction of con-
nections. Third, they usually do not consider the fact that only a
limited number of neurons are recorded in experiments. Unob-
served neurons affect the activity of observed neurons, but existing
methods do not include a systematic treatment for interference
from unobserved neurons. Recently, several attempts have been
made to overcome the above-mentioned difficulties. For instance,
some studies have adopted the information-theoretic approach to
investigate high-order correlations (Nakahara & Amari, 2002; Nie
& Tatsuno, 2012; Tatsuno, Fellous, & Amari, 2009). Assuming that
spikes are generated from an exponential family of distributions,
the method based on information geometry models the probabil-
ity of coincident multi-neuronal firings, px1,x2,...,xk , by a log-linear
model:

ln px1,x2,...,xk =
∑

i

θixi +
∑
i<j

θijxixj + · · ·

+ θ12···kx1x2 · · · xk − ψ, (1)

where xi is a binary variable representing the spikes of neuron i, θ is
a parameter representing neural interactions,ψ is a normalization
factor for the integral to be 1, and k is the number of observed
neurons, following the same notation as that in the original paper.
Further, θij represents the interaction between neurons i and j. Al-
though thismodelmitigates the problem of pseudo-correlations, it
suffers from two drawbacks. First, its computational cost increases
with k. Second, it assumes that connections are symmetric. For the
problem of directionality, a method based on Granger causality
has been proposed to extract information regarding the direction
of connections (Arnold, Liu, & Abe, 2007; Hu, Li, & Liang, 2015;
Kim, Putrino, Ghosh, & Brown, 2011; Quinn, Coleman, Kiyavash, &
Hatsopoulos, 2011). Suppose that the activities of two neurons, xi
and xj, are observed. If xj provides statistically significant improve-
ments of the future values of xi, the directed influence from xj to
xi is estimated, and it is said that there is Granger causality from xj
to xi. However, it is difficult to capture higher-order correlations
with this approach, which focuses on two spike trains. To over-
come the problems of high-order correlations and directionality
simultaneously, Noda, Hino, Tatsuno, Akaho, and Murata (2014)
recently proposed the graph structure estimationmethod based on
the graph Laplacian. Theymodeled the correlations between nodes
i and j, including higher-order ones, by

ξij = c0 + cijθij +
∑
k

ckijθikθkj +
∑
k,j

cklij θikθklθlj + · · ·

for i ̸= j, (2)

where θij is the connection from j to i and c is a decay coefficient,
following the same notation as that in the original paper. Assuming

that the influence deteriorates as it propagates to other neurons,
the method models the propagation of influence on the basis of
random walk. However, this method is inadequate for estimating
inhibitory connections because the influence can take only positive
values. Finally, regarding the problem of unobserved neurons, to
the best of our knowledge, no existing method can explicitly deal
with the influence of unobserved neurons. In this study, we de-
velop a novel mathematical framework that can systematically ad-
dress the problems of pseudo-correlations, directed connections,
and the influence of unobserved neurons.

2. Problem setting

In this section, we introduce the notations used and corre-
sponding assumptions.

Suppose that N neurons out of many are observed. Let Xi(t) ∈
{1, 0} be a random variable representing the state of neuron i ∈
{1, 2, . . . ,N} at time t (i.e., 1 denotes firing and 0 denotes non-
firing). These neurons’ activities are recorded at time t = 1, 2, . . . ,
T discretely, and the spike data are given by

D =
{
X1(t), X2(t), . . . , XN (t)

}T
t=1. (3)

Neural connections are represented as a graph structure. Let V be
a set of nodes {1, 2, . . . ,N} and E be a set of edges

{
(i, j), i, j ∈ V

}
.

Neural connections are characterized by a graph (V , E), where
V corresponds to a set of neurons and E corresponds to a set of
synaptic connections. The graph is also represented by a matrix
W ∈ RN×N . Let wij be element (i, j) of W . Here, wij represents the
strength of a connection from neuron j to neuron i. Connections
are classified into two types, namely excitatory and inhibitory
connections. According to neuroscience, a neuron is known to have
only one type of connection; thus, neurons are either excitatory or
and inhibitory. Excitatory neurons promote firing of the neurons
to which they connect. On the other hand, inhibitory neurons
suppress firing of the connected neurons. Therefore,wij is classified
as follows:⎧⎨⎩
wij > 0, excitatory connection from j to i,
wij = 0, no connection from j to i,
wij < 0, inhibitory connection from j to i.

(4)

We assume that observed neurons do not have self-connections
and that the strength of connectionwij remains unchanged during
the observed period [1, T ].

3. Stochastic firing model

We assume that firing of neuron i at time t is determined by its
internal state Ui(t) that corresponds to the membrane potential:

Pr
(
Xi(t) = 1

)
= Φ

(
Ui(t)

)
, (5)

where Φ is the cumulative distribution function of probability
density function φ,

Φ(x) =
∫ x

−∞

φ(z)dz. (6)

In this study, for mathematical simplicity, we assume that the
probability density functionφ is a Gaussian distributionwithmean
0 and variance σ 2. The Gaussian distribution function is denoted by
φσ2 and the cumulative distribution function is denoted byΦσ2 :

Φσ2 (x) =
∫ x

−∞

φσ2 (z)dz, (7)

φσ2 (z) =
1

√
2πσ 2

exp
(
−

z2

2σ 2

)
. (8)
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