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a b s t r a c t

Because of the limited reflected energy and incoming illumination in an individual band, the reflected
energy captured by a hyperspectral sensor might be low and there is inevitable noise that significantly
decreases the performance of the subsequent analysis. Denoising is therefore of first importance in
hyperspectral image (HSI) analysis and interpretation. However, most HSI denoising methods remove
noise with the important spectral information being severely distorted. This paper presents an HSI
denoisingmethod using trainable spectral difference learningwith spatial initialization (called HDnTSDL)
aimed at preserving the spectral information. In the proposedHDnTSDLmodel, a key band is automatically
selected and denoised. The denoised key band acts as a starting point to reconstruct the rest of the non-
key bands. Meanwhile, a deep convolutional neural network (CNN)with trainable non-linearity functions
is proposed to learn the spectral difference mapping. Then, the rest of the non-key bands are denoised
under the guidance of the learned spectral difference with the key band as a starting point. Experiments
have been conducted on five databases with both indoor and outdoor scenes. Comparative analyses
validate that the proposed method: (i) presents superior performance in spatial recovery and spectral
preservation, and (ii) requires less computational time than state-of-the-art methods.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Hyperspectral image (HSI) describes the spectrum reflected by
different materials in a scene with contiguous and narrow spectral
bands (Du et al., 2013). The availability of this detailed spectral
information has made HSI useful for a wide array of applications,
such as military anomaly detection (Du & Zhang, 2014; Taghipour
& Ghassemian, 2017; Tan et al., 2016), geological exploration
(Asadzadeh & Roberto, 2016), and precision agriculture (Benedik-
tsson, Palmason, & Sveinsson, 2005; Sharma, Liu, Yang, & Shi, 2017;
Wang & Gao, 2015). However, the high spectral resolution implies
the narrow slicing of the spectra in HSIs. In other words, a small
amount of the reflected energy can reach the hyperspectral sensor
in each band. Thus, the reflected energy captured by each sensor
might be low, and there is inevitable noise because of the limited
reflected energy and incoming illumination in individual band,
which significantly decreases the performance of the subsequent
analysis (Fu, Lam, Sato, & Sato, 2017). It is therefore important to
denoise before HSI analysis and interpretation.

Many works have already highlighted two primary aspects for
combining spatial and spectral features to improve performance:
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preprocessing modules and post processing modules (Asadzadeh
& Roberto, 2016; Du et al., 2013). The HSI denoising process is
of first importance in the field of HSI analysis and belongs to the
pre-processing module, which aims at removing noise in both the
spatial and spectral domains.

Although deep learning has been studied in various areas of
computer vision for decades, an efficient model suited for HSI
denoising remains an open problem. In this paper, we propose
a novel HSI denoising method using trainable spectral difference
learning with spatial starting to achieve good performance and
require less computational time. Here, a deep convolutional neural
network (CNN) with a trainable non-linearity function is designed
to learn a spectral difference mapping between the noisy HSIs and
the clean HSIs, which provides an accurate spectral reference for
the denoising process. We use a real remote sensing HSI as an
example to explain why we consider the CNN. As shown in Fig. 1,
we can observe that certain unwanted components, such as shot
noise, exist in the original bands of the real remote sensing HSIs. A
simple convolution operation can remove noise to a certain degree
as shown in the corresponding convolved bands.

Unlike existing CNN models where the thresholding function
max (0, x), also known as rectified linear units (ReLU) (Du et
al., 2017), is used, we propose a novel CNN with trainable non-
linearity functions that learns the spectral difference mapping.
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Fig. 1. Example of two original bands and the corresponding convoluted results in an HSI. Note that a simple convolution operation is used.

Currently, the automatic training of both the convolution param-
eters and the non-linearity functions in a CNN using a loss based
method is a novel approach. Chen and Pock (2017) proposed a
novel trainable nonlinear reaction diffusion (TNRD) model that
simultaneously learned all of the parameters of the convolution
operation and the non-linearity function from training data and
successfully applied it to gray-scale image denoising. To the best
of the authors’ knowledge, this idea has not been exploited in the
field of HSI denoising. Our work advances this knowledge, and we
found that the spectral differencemapping is more suitable for HSI
analysis. In addition, we introduce a feature extraction procedure
to select a key band to be denoised. The denoised key band acts as a
precise starting point to reconstruct the remaining non-key bands
under the guidance of the learned spectral difference. This process
is called spatial initialization. In essence, the spatial initialization
is designed to constrain the spectral reconstruction process with
a precise starting point. Our HSI denoising method using train-
able spectral difference learning with spatial initialization (called
HDnTSDL) achieves HSIs denoising while preserving the spectral
information.

In summary, we make three contributions: (1) We propose
HDnTSDL, a novel HSI denoising scheme based on spectral differ-
ence learning with spatial initialization. It is robust to denoise and
preserve spectra. (2) We introduce a novel CNN with the trainable
non-linearity functions, which is unlike the conventional CNNwith
the specific non-linearity functions, and successfully apply it to
analyze HSI. (3) We propose a band selection algorithm based on
feature extraction that is more suitable for HSIs with regard to
physics significance, which avoids spectral distortion. Especially,
unlike existing methods, where the CNN model is mainly used
to extract spatial features, we explored the performance of the
CNN model to characterize the spectral correlation. Experiments
have been conducted on HSIs from five different databases that
include both indoor and outdoor scenes. Comparative analyses
have validated the effectiveness and efficiency of our proposed
HDnTSDLmethod by achieving state-of-the-art performancewhile
running much faster than other competing methods.

The remainder of this paper is divided into five sections.
Section 2 reviews the related works about HSI denoising methods
and deep learning used in HSI applications. In Section 3, we de-
scribe the flowchart of the proposed methodology. Section 4 is de-
voted to the experimental results. In the last section, a conclusion
is made.

2. Related work

2.1. HSI denoising method

HSI denoising methods presently can be classified into three
categories: 2D extended methods (Buades, Coll, & Morel, 2005;
Maggioni & Foi, 2012; Mairal, Elad, & Sapiro, 2008), tensor based
methods (Maggioni, Katkovnik, Egiazarian, & Foi, 2013; Peng et al.,
2014; Xie et al., 2016) and partial differential equation (PDE) based

methods (Mndez-Rial & Martn-Herrero, 2012; Wu, Wang, Jin, &
Shen, 2017; Zhao & Yang, 2015). The simplest way is to extend the
classical 2D denoising methods to HSI band by band, such as the
block-matching and 3D filtering (BM3D) (Maggioni & Foi, 2012),
the non-local means (NLM) (Buades et al., 2005) and K-singular
value decomposition (K-SVD) (Mairal et al., 2008). However, the
corresponding results of this extension cannot achieve good per-
formance because HSI denoising band by band neglects the pri-
mary component, spectra, whichmay distort spectral information.
The second group is based on the tensor decomposition method
in which an HSI is regarded as a tensor. These methods include
parallel factor analysis (PARAFAC), tensor dictionary learning (TDL)
(Peng et al., 2014) and intrinsic tensor sparsity (ITS) (Xie et al.,
2016). Among these methods, BM4D (Maggioni et al., 2013) and
ITS offer state-of-art performance for many HSI databases. These
tensor decomposition based methods jointly take into account the
spectral–spatial information and effectively preserve the original
spectral information. However, a problem is that the application
of a core tensor and tensor product can lead to information com-
pression and the loss of spatial details. In addition, the tensor
decomposition based method is time consuming. The PDE based
methods are another powerful tool for HSI denoising, such as total
variation (Wu et al., 2017), anisotropic diffusion model (Mndez-
Rial & Martn-Herrero, 2012) and low rank models (Zhao & Yang,
2015). Note that the PDE based method is always handcrafted and
it is difficult to design a proper PDE for HSI denoising. Moreover,
all thesemethods denoised the HSI without specifically preserving
the important spectral information. To handle the obstacles of
spatial quality deterioration and noisy spectra, we simultaneously
exploited the spatial and spectral correlations. Our method funda-
mentally differs from existing HSI denoising methods in that ours
explicitly learns the spectral difference to reconstruct the clear
band.

2.2. Deep learning for HSI restoration

CNN has the advantage of local connections and sharedweights
that can reduce computational cost. This method has recently
had an explosion in popularity due to its success in HSI process-
ing applications, such as classification (Makantasis, Karantzalos,
Doulamis, & Doulamis, 2015; Tuia, Flamary, & Courty, 2015; Zhao &
Du, 2016a), dimensionality reduction (Zhao & Du, 2016b), feature
extraction (Chen, Jiang, Li, Jia, & Ghamisi, 2016; Li, Xie, & Li, 2017),
and fusion (Chen, Li, Ghamisi, Jia, & Gu, 2017; Mei, Ji, Hou, Li, &
Du, 2017; Palsson, Sveinsson, & Ulfarsson, 2017). Yuan, Zheng, and
Lu (2017) directly applied the CNN model proposed by Dong, Loy,
He, and Tang (2016) to super-resolve HSIs, but this method did
not consider spectral information preservation and the difference
between HSIs and RGB images. Currently, few works have used
the CNN to remove noise in HSIs. Xie and Li (2017) proposed a
deep learning model with trainable non-linearity functions for HSI
denoising, but the spectral information cannot be preserved well.
By far, it remains a challenge to develop CNN for HSI denoising.
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