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a  b  s  t  r  a  c  t

Ultrasound  transcranial  Holter  offers  the  possibility  of  long-duration  recordings  with  the  micro-emboli
detection  process  being  performed  offline.  This  offline  detection  allows  developing  much  more  robust
micro-embolic  detection  procedures  and applications.  From  a signal  processing  perspective,  most  com-
mercial automatic  detection  systems,  based  on the  short  time  Fourier  transform,  employ  constant
detection  thresholds  either  on  the  whole  band  or on sub-bands.  However,  earlier  studies  highlighted
many  doubts  about  the accuracy  and  robustness  of these  systems  for the  detection  of  weak  micro-embolic
signatures.  In  this  work,  we present  an  original  detection  technique  based  on energy  fluctuations  as a
strong  tool  for the detection  of  the  weakest  micro-embolic  signal.  Results,  from  a  set of real  signals,  show
a  detection  rate of  92%  and  a false  alarm  rate  of  10%.  These  good  performances  lead  us  to consider  the
proposed  technique  as a  good  candidate  to detect  weak  micro-embolic  signals.

© 2018  Elsevier  Ltd. All  rights  reserved.

1. Introduction

Cerebrovascular Accident (CVA) occurs when the blood flow to
a part of the brain is suddenly stopped either by a rupture of a
blood vessel leading to a hemorrhage, or a blockage leading to an
embolism. The relation of embolus to CVAs occurrence has been
widely demonstrated [1]. CVAs, being the second cause of mortality
worldwide, represent a major concern and death threat over a huge
population. Therefore, CVAs are considered as a public health issue
for which many research activities are performed in perspective of
finding treatments or methods of early diagnosis thus avoiding its
occurrence.

An effective widely used CVA diagnosis solution is the Transcra-
nial Doppler (TCD) system [2]. This system is commonly used for
the detection of micro-emboli circulating in the cerebral vascu-
lar system. Micro-embolic events are detected from the Doppler
signal as high intensity transient signals (HITS), superimposed on
the Doppler signal backscattered by the blood. However, TCD clin-
ical use has been limited by several hindering points. For instance,
the time needed for probe positioning can be considerably long.
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To reduce this time, Mackinnon et al. [3] proposed to use a servo-
controlled probe. Moreover, the very short effective examination
duration can be insufficient to allow the detection of several micro-
embolisms. Consequently to overpass this drawback, Mackinnon
et al. [3] have shown that the longer the examination duration, the
better confidence in the detector.

New generations of TCD systems are being developed in a way
to overcome these drawbacks. Proposed solutions involve new
enhancements, such as the servo-controlled positioning of the
ultrasound probe [3] and the possibility of long-term recordings
with the micro-emboli detection process being performed offline
through a computer [3]. A French firm, Atys Medical, implemented
a Holter system based on the innovative idea of R. Aaslid [4,3]. Chal-
lenging issues fall under two  main categories: artifact rejection
and detection of weak micro-embolic signals. This paper focuses
on weak micro-emboli detection only.

Many research works were carried out attempting to develop
methods to detect weak micro-emboli robustly. Most of these
works have tackled the issue by adapting the threshold to the deci-
sion information on which the detection is performed. When the
decision information is time-varying, a time-varying threshold is
expected and when the decision information is constant, a con-
stant threshold is expected. Otherwise weak micro-events would
never be detected.
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Concerning methods with time-varying threshold, detecting
weak micro-events may  consist in using a prediction modeling
where the probability to find a micro-embolic event is supposed
to be very weak. When the random fluctuation of the prediction
error is supposed to be heteroscedastic [5] (a specific case of non-
stationarity where the variance is time-varying) a GARCH Model
[6,7] can be used. In addition, when the random fluctuation of
the prediction error is supposed to be cyclostationary [8] (statis-
tically stationary per cycle), a synchronous AR model can be used
[9]. In such a paradigm, the decision information can be the auto-
correlation of the prediction error and the problem resides in the
choice of the threshold.

Concerning methods with constant threshold, as the micro-
embolic event is of narrow band nature, detecting weak
micro-events may  consist in using band pass filters encompassing
the spectral signature of the micro-embolic event [10]. This solution
was first proposed in [10] and was applied directly on the Doppler
signal. By using such a band pass filter on the Doppler signal ampli-
tude, the low frequency component, related to the cardiac rhythm,
is removed singly and therefore the remaining signal, composed
of random fluctuations, becomes the decision information. Thus, in
the decision information, the intensity of the micro-embolic event
is now more magnified with respect to the background Doppler sig-
nal. Therefore, the detection capability of the detector is improved.
However, in a blind detection paradigm, there is a price to pay:
the frequency of the micro-embolic signal must be known before
the filtering step. As it is impossible to know this frequency, other
methods were introduced. These methods proposed to use a bank
of juxtaposed filters in which the spectral band is divided into sev-
eral narrow sub-bands and where the detection can be operated
independently in each sub-band. Depending on the spectral divi-
sion, several filter types can be found: bank of narrow band filters
with the same width [11], discrete wavelet decomposition [12], and
wavelet packet decomposition [13]. By using these different kinds
of filters, the difficulty lies in the choice of the constant thresh-
old in each sub-band and on the fusion of the detection since a
micro-event can appear in several consecutive sub-bands.

To sum up, even though there exists plenty of robust meth-
ods for detecting micro-embolus, few of them are really capable
of detecting very weak micro-embolic signals. As mentioned pre-
viously, the main problem lies in the choice of the threshold that
must be adapted to the decision information.

In this paper, we tend to detect the lowest intensity micro-
embolic signals in a robust manner using adaptive thresholding.
This would allow detecting micro-emboli of very small sizes. This
adaptive thresholding is applied from energy signal fluctuations.
The new method will be compared to both energy-based constant
threshold derived from the whole band spectrum (standard detec-
tor) and from sub-band spectrum.

Notice that this study is an extension of a previous work we  pro-
posed [14], and includes higher number of tested signals. However,
in the present study, we have omitted the rise rate calculation phase
we used in [14] due to its high complexity. We  have also added a
training phase to optimize the detection thresholds.

2. Materials and methods

2.1. The proposed offline detection unit

It is widely stated when the Rayleigh scattering is valid, that the
energy of the backscattered Doppler signal is proportional to the
size of the scatterer to the power of 6 [13,15,16] and the energy
returned by an embolus is greater than that returned by billions
of red blood cells. Hence, energy would function as a solid deci-
sion information from which the presence of micro-emboli could

be detected. This justifies why our offline1 detectors are chosen to
be majorly based on energy criteria.

Commercial TCD systems (from Atys Medical, DWL
®

, Medilab
GmbH, Natus

®
, ScimedTM, Skidmore Medical Ltd., etc.) employ

spectral estimators based on the Short Time Fourier Transform
(STFT). The STFT spectral estimator with a sliding window can be
formally written as:

S(t, f ) =
∣∣∣∣
∫
x(�) · w∗(t − �) · exp−2�jf�d�

∣∣∣∣
2

, (1)

where x(t) is the analysed Doppler signal, w(t) is the sliding window
and * stands for complex conjugation. Note that after a preliminary
stage of experimental optimization of the STFT parameters based
on the study done in [17], the STFT in this study is performed using
a 15 ms-Hamming window with an overlap of 65%. Moreover, cal-
culations of the STFT and the instantaneous energy are carried out
repetitively on 5 s segments extracted from the Doppler signal. This
value is fixed to 5 s because it corresponds to the time duration on
the spectrogram plotted on commercial devices. It allows a good
visualization of different events that may  occur. From STFT defined
in Eq. (1), the instantaneous energy at a fixed time t can be obtained
by:

E(t) =
∫
S(t, f )df. (2)

At that stage, we assume that the instantaneous energy
E(t) = ˛(t) + �(t), represented in blue in Fig. 1a, can be expressed
through a low frequency component ˛(t), represented in red in
Fig. 1a, and a high frequency component �(t) represented in Fig. 1b.
The low frequency component that is the cyclic cardiac component
˛(t) is removed from the instantaneous energy. This is done first
by evaluating the trend ˛(t) through a smoothing step and then by
subtracting it from E(t). The remaining fluctuation2

As expected, the envelope (or the amplitude) is not constant
as it fluctuates at the cardiac rhythm. The signal is heteroscedas-
tic [5], i.e. its energy varies cyclically with time, due to the local
time-varying amount of red blood cells in the sampling volume. On
the other hand, due to the time-varying blood speed, the observed
process is quasi-cyclostationary [8], since the energy fluctuation
(variance) is time dependent or even quasi-periodic. Such prop-
erties already reported in previous works [9,7,18], lead to using a
time-varying threshold. Histograms of the positive �pos (in blue)
and negative �neg fluctuations (in green) are reported in Fig. 1c.
Absolute difference signal d(t) = |env(t) − �pos(t)| where the enve-
lope is env(t) = −

∣∣�neg(t) + j · H
(
�neg(t)

)∣∣ with H( · ) the Hilbert
transform, and a detection threshold (6.5 × �d, �d being the stan-
dard deviation of d(t)) is reported in Fig. 1d (red dashed line).

In a statistic point of view, the stochastic nature of the fluctua-
tion can be formalized by a probability density P(�). This probability
density is assumed firstly to be the summation of the probabil-
ity densities from the positive and negative parts of the energy
fluctuations:

P(�) = P(�pos + �neg) = P(�pos) + P(�neg), (4)

1 Note that because the system is offline, the computational cost is not a prior
issue.

2 The random fluctuation is due to the random positions of billions of red blood
cells traveling into the blood flow. �(t) can be decomposed into a positive fluctuation
�pos(t) and a negative fluctuation �neg(t):

�(t) = �pos(t) + �neg (t), (3)
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