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A B S T R A C T

Viscoelasticity in metallic glasses (MGs) is commonly attributed to atomic slips or the activation of local shear
transformation events. However, based on our extensive molecular dynamics simulations of creep in MGs, we
find that a significant portion of viscoelasticity in MGs is mediated through back-and-forth anharmonic motions
of atoms. Interestingly, we also show that such anharmonic oscillatory atomic motion stems mainly from col-
lective atomic rotations, which generates local vorticities with an intensity ten folds of the vorticity induced
directly by local shear. As deformation proceeds, the “vortex-like” atomic motion shows an increasing corre-
lation with local atomic slips or the activation of shear transformation zones. Our findings indicate that the
viscoelastic deformation during creep in MGs is a two-step process, which echoes very well with the recent
discovery of two secondary relaxations in a variety of MGs.

1. Introduction

Understanding local plasticity initiation and viscoelasticity in MGs
has been a topic of active research for decades [1,2]. Unlike crystalline
solids, MGs lack well-defined structural defects that can easily “mi-
grate” to initiate local plasticity [3]. Consequently, various theoretical
models were developed to elucidate the atomic origin of local plasticity
in MGs. These include the early efforts which linked plastic flow to
individual atomic jumps, such as the free volume model [4], or to co-
operative shear transformation of a group of atoms, such as the shear
transformation zone (STZ) model [5,6] and the cooperative shear
model [7]. Currently, in the MG community, there is general agreement
that local plasticity initiation in MGs be related to nano-scale in-
homogeneity in their amorphous structure [8–10]. STZ activation may
be facilitated by geometrically unfavored motifs [11], regions poor in
local fivefold symmetry [12] or “flow” units [13], which undergo large
non-affine displacements upon mechanical agitation and conceptually
behave in a liquid-like manner [14,15].

Aside from these theoretical efforts, extensive experiments were
also carried out, aiming at revealing the dynamic origin of local plas-
ticity in MGs through the study of their stress relaxation behaviors
[16–20]. According to Refs. [17,21], steady state plastic flows could be
associated with α relaxation [17], which involve large-scale inelastic
atomic motions [22], and STZ activation could be associated with β

relaxation because of the commonality in their activation energies
(∼1 eV for β relaxation and>2 eV for α relaxation) [18]. Recent ex-
periments clearly demonstrated that there are two secondary relaxation
processes in MGs and the additional secondary one (termed as the “fast
β relaxation” in Refs. [19,20]) possesses an average activation energy
much smaller than that of a STZ, falling into a narrow range between
0.3 and 0.6 eV [19,20] and being insensitive to the glass transition
temperature Tg [20]. These findings are intriguing, which suggest that
there might be a more localized process of fast motion of fewer atoms
prior to STZ. However, the atomistic mechanism for such a process, if
there is any, is yet to be understood.

In this paper, we intend to investigate the atomistic mechanism for
viscoelasticity during creep in MGs with molecular dynamics (MD) si-
mulations. Unlike the previous studies [23,24], we studied the initia-
tion of plastic flow in a model Zr50Cu50 (in atomic%) MG subject to a
constant stress, i.e. creep. By tracking the trajectories of the individual
atoms with the field analyses, we were able to identify the subtle vis-
coelastic deformation process prior to overall yielding.

2. Materials and methods

The MD simulations were carried out with the embedded atom
method (EAM) potential [25]. The model Cu50Zr50 system contained
50,000 atoms and had the dimension of ∼10 nm×10 nm×10 nm,
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which was subjected to periodic boundary conditions (PBC) for all three
dimensions. To obtain a glassy state, the system was initially melted
and equilibrated at T=2000 K for 100 ps, and subsequently quenched
at a cooling rate of 1011 K/s to different temperatures (50 K and 100 K).
The whole process was in the isothermal-isobaric (NPT) ensemble
controlled via the Nose-Hover thermostat and barostat, respectively
[26]. To simulate creep, a series of uniaxial compressive stresses along z
direction were applied to the model MG at a nominal stress rate of
0.1 MPa/fs and held for 300 ps.

3. Results and discussion

Fig. 1(a) shows the typical strain–time curves at the holding stress
σh=2.2, 2.5 and 2.8 GPa obtained at the temperature T=50 K, and
σh=2.2, 2.4 and 2.6 GPa at T=100 K. During load hold, the overall
strain ε first exhibits transience and develops afterwards into a steady
state, which obeys the linear scaling ε∝ t, where t is the time lapse. At a
relatively high stress, such as σh=2.8 GPa at T=50 K and
σh=2.6 GPa at T=100 K, a pronounced acceleration of strain rate can
be also observed following the steady state or secondary creep within
the simulation time window (see Fig. 1(a)).

To understand the deformation dynamics during load hold, we first
calculated the self-part of the van Hove function [27]
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i i1 , where N is the number of
atoms, δ(·) is the Dirac delta function,< ·> represents the ensemble
average, and ri(t) is the position of atom i at time t. According to Ref.
[27], Gs(r,t) is the probability density of an atom moving by a dis-
placement r over the time lapse t, and
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1 is the radial probability
density, where d is |r|. As shown in Fig. 1(b), 4πd2Gs(d,t) displays a
Gaussian distribution within short time, which indicates independent
random motion of atoms and physically corresponds to a Markovian
process [28,29]. However, 4πd2Gs(d,t) deviates from the Gaussian form
with time and develops a fat tail for large d. Such a non-Gaussian be-
havior usually signals a collective atomic motion and the rise of dy-
namic heterogeneities [30,31].

Aside from the self-part of the van Hove function, we computed the
mean square displacement (MSD) of atoms during load hold, which is
expressed as 〈d2(t)〉= 〈|r(t)-r(0)|2〉. Fig. 2 shows the plot of MSD
versus t for varied σh at 50 K and 100 K. Evidently, MSD is proportional
to t2 for t < 0.1 ps, which can be attributed to ballistic atomic motion
[32]. As time lapses, a plateau emerges, implicative of restricted atomic
motions (or “cage” dynamics) [28,32]. For t > 5ps, one can observe
that MSD is proportional to t, which signals diffusive atomic motion
[32] after the event of “cage” breaking. The transition from the ballistic
to caging regime is stress independent, while the cage breaking shows
high stress dependence. In addition, we calculated the two-time cor-
relation function G4 [33] or the joint probability of an atom moving by

d1i in the time window [0, t] and then by d2i in [t, 2t] along the i di-
rection: G4(d1z,d2z,t)= 〈δ(d1z-(rz(t)-rz(0)))δ(d2z-(rz(2 t)-rz(t)))〉, where
i= x, y, or z, standing for the direction, and ri is the i coordinate of an
atom [33]. To understand the dynamics for the change of deformation
mechanisms, we selected five critical moments for study, as marked by
the Roman numerals in Fig. 2.

Being keyed to the five key moments for the curve of σh=2.8 GPa
at 50 K in Fig. 2, Fig. 3 display the contour plots of G4 we obtained
through the extensive analysis of the trajectories of atoms. In the bal-
listic regime, atoms move in a unidirectional manner, as seen in
Fig. 3(a)–(c), and the data points accumulate in the first and third
quadrats around the trend-line d1i= d2i. Interestingly, at the transition
from the ballistic motion to cage dynamics, a significant amount of
atoms exhibit a back-and-forth mode of movement, as exemplified by
Fig. 3(d)–(f), which clearly shows that the G4 data start to shift from the
first and third quadrants with the trend-line d1i= d2i to the second and
forth quadrants with d1i=−d2i. Note that the magnitudes of the for-
ward and backward atomic movements are generally correlated, which
implies a “memory” effect and a non-Markovian process [33]. This
trend towards back-and-forth atomic movements becomes prominent
with increasing displacement in the caging regime [Fig. 3(g)–(i)],
which is sensible since physical confinement can cause a moving atom
to bounce back if it undergoes an excessive displacement. Furthermore,
it is worth noting that the forward and backward displacement are not
exactly equal, which can lead to the build-up of local elastic stresses. As

Fig. 1. (a) Strain-time curves under different holding stresses at 50 K and 100 K. (b) Time evolution of the self-part of the van Hove function for σ=2.8 GPa at 50 K.

Fig. 2. Mean squared displacement at varied temperatures and stresses.
Ballistic, caging and diffusive regime are observed in each case. The cage-
trapping plateau is temperature dependent and this transient “cage” breaks up
in a shorter time under higher applied stresses. Roman numerals denote five key
moments for the curve of σh=2.8 GPa at 50 K.
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