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ARTICLE INFO ABSTRACT

Background: The local dynamic stability method (maximum Lyapunov exponent) can assess gait stability. Two
variants of the method exist: the short-term divergence exponent (DE), and the long-term DE. Only the short-
term DE can predict fall risk. However, the significance of long-term DE has been unclear so far. Some studies
have suggested that the complex, fractal-like structure of fluctuations among consecutive strides correlates with
long-term DE. The aim, therefore, was to assess whether the long-term DE is a gait complexity index.
Methods: The study reanalyzed a dataset of trunk accelerations from 100 healthy adults walking at preferred
speed on a treadmill for 10 min. By interpolation, the stride intervals were modified within the acceleration
signals for the purpose of conserving the original shape of the signal, while imposing a known stride-to-stride
fluctuation structure. Four types of hybrid signals with different noise structures were built: constant, anti-
correlated, random, and correlated (fractal). Short- and long-term DEs were then computed.

Results: The results show that long-term DEs, but not short-term DEs, are sensitive to the noise structure of stride
intervals. For example, it was that observed that random hybrid signals exhibited significantly lower long-term
DEs than hybrid correlated signals did (0.100 vs 0.144, i.e. a 44% difference). Long-term DEs from constant
hybrid signals were close to zero (0.006). Conversely, short-term DEs of anti-correlated, random, and correlated
hybrid signals were closely grouped (2.49, 2.50, and 2.51).

Conclusions: The short-term DE and the long-term DE, although they are both computed from divergence curves,
should not be interpreted in a similar way. The long-term DE is very likely an index of gait complexity, which
may be associated with gait automaticity or cautiousness. Consequently, to better differentiate between short-
and long-term DEs, the use of the term attractor complexity index (ACI) is proposed for the latter.
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1. Introduction (DE)—by means of linear fitting over a given range. Two ranges have

been proposed: a short-term range over 0-1 or 0-0.5 stride (the short-

Analysis of the nonlinear variability of human locomotion has at-
tracted growing interest over the past decade [1]. This approach pos-
tulates that decoding nonlinear dependence among consecutive gait
cycles (strides) can help to better understand gait control. A popular
nonlinear method is the local dynamic stability (LDS) of the gait [2-5].
LDS is derived from the maximum Lyapunov exponent, which is used to
highlight the deterministic chaos in nonlinear systems. Gait LDS has
been proven particularly useful for detecting patients at risk of falling
[6].

The majority of LDS studies use the Rosenstein’s algorithm that
computes the distance between trajectories of an attractor reflecting the
gait dynamics [3,4]. A logarithmic divergence curve is then built to
assess the exponential divergence rate—the divergent exponent

term DE), and a long-term range over 4-10 strides (the long-term DE)
[4]. Puzzling results have been found when these two LDS indexes are
used together to assess fall risk: both indexes most often vary in op-
posite directions [7,8]. Further theoretical and experimental studies
have shown that only the short-term DE is a valid gait stability measure
[2,9,10]. However, it is not excluded that the long-term DE is associated
with other gait features given its responsiveness to various conditions
[11-13].

Another approach for studying nonlinear gait variability is the
analysis of the noise structure of stride-to-stride fluctuations. In healthy
individuals, basic gait parameters, such as stride interval, stride length
and stride speed, fluctuate among strides within a narrow range of
2%—-4% [14]. It has been shown that these fluctuations are not random,
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but exhibit long-range correlations and a scale-free, fractal-like pattern
[14-16]. This particular noise structure is observed in many different
physiological signals, and is considered a hallmark of the complexity of
living-beings [17]. Interestingly, this fractal structure can be altered
when external cues are used to intentionally drive the steps, such as
synchronizing gait to a metronome, or by following marks on the floor
[16].

In 2009, Jordan et al. [18] analyzed both gait stability and com-
plexity in treadmill walking and running. They observed a strong cor-
relation (r = 0.80) between a measure of gait complexity (the scaling
exponent of stride intervals) and the long-term DE. In 2012, Sejdic et al.
[12] assessed the noise structure of stride intervals as well as the LDS
(short-term and long-term DEs) during normal walking with and
without external cueing (metronome walking). The results showed that,
with auditory cueing, the long range-correlations of stride intervals
changed to anti-correlated patterns along with a substantial decrease of
long-term DEs, but with no change of short-term DEs. Similarly, in 2013
[4], we analyzed the gait stability and complexity of treadmill walking,
confirming that both long-term DE and the noise structure of stride
intervals were similarly modified by external cueing. A significant
correlation between scaling exponents and long-term DEs (r = 0.57)
was also observed. In summary, the long-term DE seems more asso-
ciated with the noise structure of stride intervals than with local sta-
bility and fall risk. Complex fluctuations that occur over dozens of
consecutive strides seem to induce a less dampened divergence curve,
resulting in a higher long-term DE.

The current study’s objective was to further explore whether the
long-term DE should be interpreted as an index of gait complexity ra-
ther than an index of gait instability. To this end, stride intervals of
natural gait acceleration signals were replaced with artificial time series
exhibiting known noise structure. The hypothesis was that higher long-
term DEs were associated with a more complex variability of stride-to-
stride fluctuations. It was also assumed that short-term DEs were, in
contrast, not sensitive to the noise structure of stride intervals.

2. Methods
2.1. Setting

A large, anonymized dataset of acceleration signals obtained from
our previous studies was re-analyzed [19,20]. In short, 100 healthy
individuals aged between 20 and 69 years walked at preferred speed on
a treadmill for five minutes in two sessions, separated by one week. A
3D accelerometer, attached to the sternum, recorded the trunk accel-
eration.

2.2. Data pre-processing

Each of the two-hundred acceleration signals was pre-processed
using Matlab (R 2017a; Mathworks, Natick, MA, USA). First, the ver-
tical signal was selected and normalized to zero mean (i.e. removal of
the constant gravity component). Based on the walking cadence as-
sessed using spectrum analysis, 500 steps (250 strides) were extracted
from the 5-minute signal, which was then resampled to a constant
length of 25,000 samples. A custom peak-detection algorithm found the
local maxima, which corresponded to heel strikes (Fig. 1A, B). One in
two of these maxima delimited each stride and constituted the original
time series of stride intervals. The standard deviation (SD) and the
coefficient of variation (CV = SD / mean X 100) characterized the
variability magnitude among the stride intervals. Finally, the detrended
fluctuation analysis (DFA) determined the noise structure of the stride-
interval time series. DFA can detect self-similarity, and hence correla-
tion structure, in non-stationary times series [4,21]. The slope of a line-
fit in a log-log plot of scales vs fluctuations is the scaling exponent. The
evenly spacing method [22] was used, with box sizes between 6 and N/
2, i.e. 125. If the scaling exponent is smaller than 0.5, the noise is
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deemed anti-correlated. Random noise has a scaling exponent of about
0.5. Correlated noise exhibit a scaling exponent lying between 0.5 and
1.

2.3. Signal selection

Using a simple algorithm to look for local maxima may produce
spurious stride intervals due to the sporadic presence of two close ac-
celeration peaks of similar intensity around heel strike. This phenom-
enon is mainly related to idiosyncratic gait pattern and suboptimal
sensor placement (upper trunk). Therefore, we excluded the poorly
configured signals that corresponded to at least one of these two cri-
teria: 1) an average CV of stride intervals greater than 8%; or 2) a
scaling exponent below 0.5. The interval time series of the included
signals, therefore, had a noise structure and magnitude similar to the
commonly admitted values, i.e. a CV around 3%, and a scaling ex-
ponent around 0.7 [16].

2.4. Artificial times series

For each included acceleration signal, we built three computer-
generated time series with the same length (i.e. 250 points), mean, and
SD as the original stride-interval time series, but with different noise
structures (i.e. anti-correlated, random and correlated structures)
(Fig. 1C). The random time series were generated by the Matlab
random number generator (normrnd). Correlated and anti-correlated
time series were generated with an autoregressive fractionally in-
tegrated moving average (ARFIMA) noise simulator [23]. Based on the
time-series theory introduced by Box & Jenkins [24], ARFIMA models
can simulate processes with long-range correlations among consecutive
samples [25]. DFA was applied to measure the actual scaling exponent
of the artificial time series.

2.5. Hybrid signals

Each acceleration signal was combined with the corresponding ar-
tificial time series to form the hybrid signals. We sought to preserve the
shape of the original signal, while altering the duration of each stride
according to the artificial time series. To this end, each stride in the
original signal was lengthened or shortened by adding or removing
points by interpolation (Fig. 1D). The stride intervals in the original
signal were replaced by the intervals in the artificial times series. We
used the shape-preserving piecewise cubic interpolation algorithm
(pchip) provided by the Matlab function interpl. As a result, three hy-
brid signals with identical shape, but different noise structures for stride
intervals, were obtained. A fourth hybrid signal was also generated by
equalizing the duration of each stride to the mean stride interval
(constant signal).

2.6. Attractor divergence curves and divergence exponents

Divergence curves and DEs were computed following the habitual
method applied in our lab [4]. Multi-dimensional attractors were con-
structed based on the delay embedding theorem. A global false nearest
neighbors (GFNN) algorithm determined an attractor dimension of five
common for all signals. Individualized time delays were assessed by the
average mutual information (AMI) of each signal [mean delay (SD): 7.3
sample (2.6)]. Logarithmic divergence curves were built with the Ro-
senstein’s algorithm. The time axis (x-axis) was normalized by stride
intervals. The average curves are presented in Fig. 2. The exponential
divergence rate was computed for three time-scales: across the span of
0-0.5 stride (short-term DE), 2-4 strides, and 4-10 strides (long-term
DEs).
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