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A B S T R A C T

A modified genetic algorithm (GA) is developed based on the Boolean code to optimize the layout of turbines in
the wind farm. With the proposed method, a 2 km� 2 km wind farm with flat terrain under three wind scenarios
is planned to yield the lowest unit cost per power output. Comparing with the optimized results from previous
studies, lower cost can be obtained from the proposed method. The proposed method also shows high conver-
gence stability and efficiency regarding different dense grid configurations. The algorithm is therefore particularly
suitable for siting of wind turbines in a highly dense grid. Besides, the proposed algorithm has been prepared with
good adaptability and it can be adapted easily for solving optimization problems in different engineering studies.

1. Introduction

Wind energy, due to its renewability and sustainability, is an ideal
alternative to fossil fuels. There is a rush in the exploitation of wind
energy in recent years, and it has become a major source of power other
than fossil fuel. To harvest the wind energy, wind farms in various scales
and forms have been developed worldwide. However, the cluster of wind
turbines causes low power generation of downstream turbines comparing
with upstream that share higher wind speed, and this is known as the
wake effect. Existing studies showed that wake effect resulted in a 10%–

20% loss of the total power generation in normal wind farms (Barthelmie
et al., 2009). To diminish this loss, the number and the position of the
turbine should be carefully studied avoiding the wake effect. More tur-
bines, generally, would generate higher total power with lower marginal
cost of construction. However, due to the wake effect, the profit (total
power output/total cost) of wind farm could also be reduced if the siting
of the wind turbines is not suitable. Therefore, wind farm optimization is
a balance of the power output and the cost to yield the highest profit.

Combinations of turbines and their position determine wind farm
layout arrangement strategies. An area divided into N�N cells would
have 2N�N layouts for each cells either has a turbine or not. Facing the
huge solution domain, wind farm layout optimizations are usually solved
mathematically by optimization algorithms. Mosetti et al. (1994) first
introduced the genetic algorithm (GA) to the problem. A 2 km� 2 km

wind farm with flat terrain was optimized under three wind scenarios.
The wind farm was divided into 10� 10 cells with each one representing
a potential position for a wind turbine. If the turbine was placed in this
position, the value of that cell is 1, otherwise the value was 0. Each
configuration of wind farm could then be represented as a 100 bit 0–1
string, and the total number of possible configurations was 2100. With the
selection, crossover andmutation of the codes, GA optimized the solution
to give the best strategy with a minimum objective value—the cost per
unit power generation.

Following Mosetti's study, Grady et al. (2005) used a larger popula-
tion and more generations in the GA to give better solution with a lower
objective value. Mittal (2010) studied the same case with a fine grid
scheme. Results showed that the density of the grid was significant in the
optimization procedure where a high dense grid increased the accuracy
of optimization. Wang et al. (2009) developed a grid unrestricted GA
using the real code. This code showed a higher accuracy comparing with
the GA using binary code. However, the number of turbines had to be
known a priori. Gao et al. (2016) validated the multi-population GA with
the optimization of a wind farm same as Grady et al. (2005) and Mittal
(2010), and it gave better results. Mora et al. (2007) and Gonzalez et al.
(2010) adopted different objective functions in GA to account for
different economic situations. The effects of many economic factors are
investigated such as initial capital investment, the discount rate, yearly
income, etc. Applying a multi-objective GA, Chen et al. (2015) increased
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the wind farm efficiency and decreased cost per unit power production at
the same time.

More complicated studies with more constraints had been conducted
since. Wang et al. (2015a,b) studied the scenario that the land was owned
by different owners. Chen et al. (2013) conducted the optimization with
turbines of different hub heights. Results showed that an optimal com-
bination of turbines with different hub heights would yield a better so-
lution. Gonz�alez et al. (2015) adjusted the pitch angle and the tip speed
ratio of the wind turbine for the maximum overall power production. The
results showed that a deliberate reduction of the upstream turbine power
coefficient may increase the total power generation. Gao et al. (2014)
also conducted a case study in Hong Kong considering the terrain

roughness.
Different heuristic algorithms or optimization methods were also

adopted and investigated. Marmidis et al. (2008) showed the Monte
Carlo simulation yielded better optimizing results comparing with
Mosetti et al. (1994) and Grady et al. (2005). However the optimized
layout resulted in a random way and could hardly be applied to engi-
neering purpose. Ant colony algorithm showed good performance in
finding the global optimal solution of the problem (Eroglu and
Seçkiner, 2012). Song et al. (2015) adopted greedy algorithm with
virtual particle wake model to the problem, which showed high effi-
ciency in complex terrain situation. Comparing to GA and Monte Carlo
simulation, similar results were given by artificial neural network,
which suggest the potential availability of the method (Ekonomou
et al., 2012). For the existing wind farm, the layout and efficiency could
be optimized by sequential convex programming algorithm (Park and
Law, 2015). Finally, Particle Swarm Optimization (PSO), in contrast
with GA, showed a higher efficiency in computation but lower accuracy
and higher possibility to be trapped in local optimum (Amaral and Rui,
2017).

Though various optimizing algorithm have been applied to the wind
farm layout optimization problem. The GA with binary code is, in
general, most commonly used. As mentioned above, when optimizing
the wind farm using GA, the first step is translating layouts as 0–1 codes.
Through the iteration of initialization, crossover, mutation and selec-
tion of these codes, the solution is optimized constantly. In previous
studies, ordinary GA with binary code were applied (Mosetti et al.,
1994; Grady et al., 2005; Wang et al., 2015a,b; Gao et al., 2016).
However, different from traditional problems that could decode the 0–1
string to decimal value, the 0–1 codes for wind farm layouts should be
treated as Boolean codes, which stand for quantity and order. In this
study, the Boolean features of the codes are considered and specific
modifications are made on GA for the problem like wind farm optimi-
zation. The effectiveness and efficiency of the modified method are
validated in the optimization of a 2 km� 2 km wind farm with flat
terrain under three wind scenarios. The optimized results are compared
with those from previous studies. Finally, the effect of the grid density is
studied with three different grid schemes.

2. Wake modelling and objective function

Based on the linear wake model proposed by Jensen (1983), a revised
wake model is adopted to predict the velocity variation of the turbine
wake in this study. The wake region is modeled as a conical area as
shown in Fig. 1 with uniform velocity distribution.

For the wake region, momentum conservation of the control volume
gives:

ρπr2dud þ ρπ
�
r2 � r2d

�
u0 ¼ ρπr2u (1)

Where where u0is the ambient stream velocity, u and r are wake velocity
and radius, ud and rdare downstream wake velocity and radius.

According to turbine momentum theory, ud and rdequals to:

ud ¼ u0ð1� 2aÞ (2)

rd ¼ rr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a
1� 2a

r
(3)

where a ¼ 1� ffiffiffiffiffiffiffiffiffi
1�CT

p
2 is the axial induction factor related to the wind turbine

thrust coefficient CT , rr is the rotor radius.
Combine equation (1) and (2), momentum conservation of control

volume would gives:

ρπr2u0 � 2aρπr2du0 ¼ ρπr2u (4)

Then the wake velocity u could be derived as:

Fig. 1. Linear wake model.

Fig. 2. Overlap area.

(a) Crossover (b) Mutation

Fig. 3. Operators of GA.
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