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h i g h l i g h t s

• Estimation of a latent trait when the correct responses are unknown.
• The model accounts for continuous, categorical, or mixed response formats.
• Focus on applications with complex interview data (e.g., eyewitness testimony).
• Minimal requirements for additional response distributions.
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a b s t r a c t

Measuring shared beliefs, expert consensus, or the details of a crime in eyewitness testimony represents a
psychometric challenge. In expert interviews, for example, the correct responses representing the expert
consensus (i.e., the answer key) are initially unknown and experts may differ in their contribution to
this consensus. I propose the variable-response model, an extension of latent-trait models. The model
allows the estimation of the answer key and the latent trait for continuous, categorical, or mixed
responses. I describe some minimal requirements for the addition of new response formats to the
model. I further propose a Markov chain Monte Carlo algorithm to estimate the model parameters. The
results of a simulation study demonstrate that the algorithm accurately recovers the data-generating
parameters. I also present an application of the variable-response model to the empirical data of a
Geography test. In this application, the parameter estimates correspond well with the true answer
key.

© 2018 Elsevier Inc. All rights reserved.

1. Consensus theory for mixed response formats

Consensus theory is an extension of latent-trait models that as-
sumes that the correct responses to a set of questions – the answer
key – are unknown (e.g., Anders & Batchelder, 2012; Batchelder
& Romney, 1988; Romney, Weller, & Batchelder, 1986). Consensus
theory includes the answer key as a set ofmodel parameterswhich
are estimated along with the latent trait. Originally, the method
was proposed for applications in Anthropology (e.g., Romney et
al., 1986): Researchers who question people about an unknown
culture initially donot know the answer key. In such an application,
estimating the answer key – that is, details about the unknown
culture – is typically the primary goal. Another application includes
the eyewitness testimony of multiple witnesses. Consensus theory
offers an estimate of what happened during a crime – the answer
key – while accounting for inter-individual differences in the wit-
nesses’ ability to recall the crime (Waubert de Puiseau, Aßfalg,
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Erdfelder, & Bernstein, 2012;Waubert de Puiseau, Greving, Aßfalg,
& Musch, 2017).1

Unfortunately, applications of consensus theory are limited
by the lack of models that account for mixed response formats
within a test. Extant models account for dichotomous (e.g., yes
vs. no), multiple choice, ordinal, and continuous response for-
mats (Anders & Batchelder, 2015; Anders, Oravecz, & Batchelder,
2014; Batchelder & Anders, 2012; Batchelder & Romney, 1988;
Batchelder, Strashny, & Romney, 2010; Karabatsos & Batchelder,
2003). However, currently, it is not possible to mix these response
formats and estimate the latent trait based on the combined re-
sponses. Consider again the example of an eyewitness interview.
Extant models can be inadequate for eyewitness testimony: yes–
no questions, for example, are a poor match for the complexity of
eyewitness recollections (e.g., Waubert de Puiseau et al., 2012).

Mixed response formats are well known in latent-trait analysis
(Moustaki &Knott, 2000;Moustaki & Papageorgiou, 2005; Sammel,

1 Strictly speaking, consensus theory provides an estimate of the consensus
between witnesses. This consensus typically overlaps with but is not necessarily
identical to the ground truth inmock crimes (Waubert de Puiseau et al., 2012, 2017).
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Ryan, & Legler, 1997). Generalized latent trait models allow a
mixture of response formats within the same test. Here, I propose
the variable-response model (VRM), an analogous approach for con-
sensus theory inwhich the answer key is unknown. Unfortunately,
generalized latent trait models are not readily adapted to consen-
sus theory. Instead, I propose an approach for the VRM that is based
onwell-known latent-traitmodels for dichotomously scored items
(Birnbaum, 1968; Rasch, 1961). In these models, the item charac-
teristic curve describes the probability of a correct response as a
function of the model parameters. The VRM extends the concept
of the item characteristic curve to all permissible responses of an
item. This approach includes the answer key in the model as a
latent parameter.

In the following sections, I begin with a brief introduction of
the 2-parameter logistic model for dichotomously scored items
(Birnbaum, 1968). This model forms the core of the VRM. By
extending the 2-parameter logistic model to all permissible re-
sponses – independent of the hypothesized response distribution
– the model core can be flexibly combined with any response
probability distribution that meets some minimal requirements. I
formulate the requirements for these distributions and introduce
two examples. For the parameter estimation, I further propose a
Markov chain Monte Carlo (MCMC) procedure along with model
selection and model check indices. Finally, I present the results of
a simulation study and the application of the VRM to the empirical
data of a Geography test.

2. The variable response model

Arguably, the most well-known latent-trait models account
for items that are scored dichotomously as either correct or in-
correct (Birnbaum, 1968; Rasch, 1961). These models assume
unidimensionality—that is, a single latent trait underlies the re-
sponses of a respondent. In consensus theory, a similar concept
is referred to as the common truth or single culture assumption
and requires that there is a single answer key for all respondents
(e.g., Batchelder & Romney, 1988; Karabatsos & Batchelder, 2003).
For present purposes, I assume unidimensionality and a single
culture for the VRM as well.

Common latent-trait models for dichotomously scored items
assume that the probability of a correct response is a nonde-
creasing function of the latent trait. Let Xik be the response of
respondent i to item k and Zk the answer key to item k. Further let
θi ∈ (−∞, ∞) be the latent trait of respondent i. The 2-parameter
logisticmodel (Birnbaum, 1968) defines the probability of a correct
response of respondent i to item k as

P (Xik = Zk|ϕ) =
1

1 + exp (−ak [θi − dk])
(1)

with model parameters ϕ = {θi, dk, ak}. In Eq. (1), dk ∈

(−∞, ∞) and ak ∈ (0, ∞) are the item difficulty and item dis-
crimination parameters of item k, respectively. The item difficulty
and discrimination parameters determine the location and slope
of the logistic function in Eq. (1), respectively. For any probability
of a correct response, a higher (lower) item difficulty requires a
higher (lower) latent trait to achieve the same probability of a
correct response. Conversely, for any change in the probability of
a correct response, a relatively small (large) change in the latent
trait is necessary if the item discrimination is high (low). Eq. (1)
is also known as the item characteristic curve of item k. Although
I rely on the 2-parameter logistic model in Eq. (1), all following
considerations are readily adapted to alternatives such as one- or
two-parameter logistic or normal-ogive models.

2.1. The response characteristic curve

The VRM extends the concept of the item characteristic curve
in Eq. (1) to that of the response characteristic curve—that is, the
probability of any permissible response given the model param-
eters. Like other consensus-theory models, but unlike latent-trait
models, the VRM accounts for responses, not item scores (e.g. cor-
rect vs. incorrect).

Specifically, in Eq. (1), the probability of the correct response
P (Xik = Zk|ϕ) is a nondecreasing function of the latent trait. For
an item with only two response alternatives, Eq. (1) implies that
the probability of the incorrect response is 1 − P (Xik = Zk|ϕ), a
nonincreasing function of the latent trait. The VRM applies this
principle to two or more response alternatives, including contin-
uous responses. Specifically, the response characteristic curve of a
response Xik is defined as

P (Xik|ϕ) =⎧⎪⎪⎨⎪⎪⎩
P− (Xik) +

P+ (Xik) − P− (Xik)

1 + exp (−ak [θi − dk])
if P+ (Xik) ≥ P− (Xik)

P+ (Xik) +
P− (Xik) − P+ (Xik)

1 + exp (ak [θi − dk])
if P+ (Xik) < P− (Xik) .

(2)

The definition of the response characteristic curve in Eq. (2)
adds two important concepts to Eq. (1): P+ is the probability
distribution of the responses to item k as θ → ∞; conversely, P− is
the probability distribution of the responses to item k as θ → −∞.
In Eq. (2), P+ and P− serve as upper and lower asymptotes (and
vice versa) of the logistic function.2 Consequently, I refer to P+

and P− as asymptotic response distributions. If the responses are
categorical, P+ and P− are probability mass functions. Conversely,
if the responses are continuous, P+ and P− are probability densities.

Eq. (2) implies that the distribution of the responses for a fixed
set of parameters ϕ follows a mixture of the asymptotic response
distributions given as

Q (X; ϕ) = P+ (X) P (ϕ) + P− (X) [1 − P (ϕ)] , (3)

where P (ϕ) denotes the 2-parameter logistic model in Eq. (1).

Proof. For the sake of brevity, let P (X |ϕ) be the response char-
acteristic as defined by Eq. (2) for an arbitrary combination of a
response X and a set of parameters ϕ, let Q (X; ϕ) be the mixture
distribution in Eq. (3) for this pair, and let P+(X) and P−(X) be the
value of the asymptotic response distributions for the response X .
Now, consider the three mutually exclusive and jointly exhaustive
cases: P+(X) = P−(X), P+(X) > P−(X), and P+(X) < P−(X). In all
three cases, P (X |ϕ) in Eq. (2) is equivalent to the finite mixture
Q (X; ϕ) in Eq. (3).

Case 1, P+(X) = P−(X): According to Eq. (2), P (X |ϕ) = P−(X).
Because P+(X) = P−(X), P+(X) can be replacedwith P−(X) in Eq. (3)
which gives Q (X; ϕ) = P−(X) = P (X |ϕ).

Case 2, P+(X) > P−(X): In this case, Eq. (2) yields P (X |ϕ) =

P− (X) + [P+ (X) − P− (X)] P (ϕ) and applying elementary algebra
one can see that P (X |ϕ) = P+(X)P (ϕ) + P−(X) [1 − P (ϕ)] =

Q (X; ϕ).
Case 3, P+(X) < P−(X): By noting that 1 − P (ϕ) =

1/[1 + exp(ak[θi − dk])], Eq. (2) yields P (X |ϕ) = P+ (X) +

[P− (X) − P+ (X)] [1 − P (ϕ)]. Again, applying elementary algebra

2 Barton and Lord (1981) tested a similar approach to Eq. (2) with upper and
lower asymptotes for the logistic model Eq. (1). However, the logistic model only
accounts for the probability of the correct response which requires knowledge of
the answer key. Conversely, Eq. (2) describes the probability of any response given
the model parameters.
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