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Abstract

In [3], an algorithm is presented for computing all real roots of univariate scalar Bernstein
polynomials by subdividing the polynomial at a known root and then factoring out the root from
the polynomial, resulting in a reduction in problem complexity. This short report presents a speed-
up over [3], by circumventing the need for subdividing the polynomial each time a root is discovered,
an O(n2) process, where n is the order of the polynomial. The subdivision step is substituted for
by a polynomial division. This alternative also has some drawbacks which are discussed as well.
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1 Introduction and related work

Computing zero-sets of polynomials is an ubiquitous problem in numerous fields in the sciences, engi-
neering, and design. Applications in geometric design are many and varied: implicit representation of
manifolds, computing intersections of manifolds, sweeps and offsets, to name a few. This short note aims
to further improve upon a recently proposed method [3] for computing the roots of univariate scalar
Bernstein polynomials. Unlike traditional approaches [4, 5] which subdivide the polynomial at arbitrary
locations, in [3], the polynomial is subdivided at a known root.

The algorithm proposed in this paper continues the line of thought in [3], while replacing the subdi-
vision of the input polynomial at a known root t0, with a polynomial division by (t− t0). Each time a
root is discovered, it is factored out using a linear-time routine, which works by reversing the process of
Bernstein polynomial multiplication, and is discussed in Section 2. The overall algorithm for computing
real roots is given in Section 3. A comparison of running times with the previous state-of-the-art method
in [3] over a large number of polynomials, is performed in Section 4, and shows a speed-up by a factor of
about two, especially on polynomials of lower degrees. This report concludes in Section 5, with remarks
on issues related to numerical stability and computational gain.

2 Factoring out roots

Let c(t) be a univariate scalar Bernstein polynomial of degree m+ 1, expressed as,

c(t) =
m+1∑
i=0

ciBi,m+1(t), (1)

where Bi,m+1, 0 ≤ i ≤ m+ 1, are the Bernstein basis functions and ci, 0 ≤ i ≤ m+ 1, are the Bernstein
coefficients. Suppose that c(t) has a known root at t0 ∈ [0, 1], i.e., c(t0) = 0. By the fundamental
theorem of the algebra, c(t) may be expressed as a product of two polynomials, viz., r(t)(t − t0),
where r(t) is of degree m. Given a polynomial r(t) =

∑m
i=0 riBi,m(t) of degree m with Bernstein

coefficients ri, i = 0, . . . ,m and a polynomial g(t) =
∑k

i=0 giBi,k(t) of degree k with Bernstein coefficients
gi, i = 0, . . . , k, their product, c(t) = r(t)g(t) is expressed in Bernstein form as follows [2]:

c(t) =
m+k∑
i=0
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